PV power output prediction from sky images using convolutional neural network: The comparison of sky-condition-specific sub-models and an end-to-end model

天空 均方误差 计算机科学 人工神经网络 卷积神经网络 参数统计 人工智能 模式识别(心理学) 遥感 数学 气象学 统计 地理
作者
Yuhao Nie,Yuchi Sun,Yuanlei Chen,Rachel Orsini,Adam R. Brandt
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:12 (4) 被引量:29
标识
DOI:10.1063/5.0014016
摘要

Photovoltaics (PV), the primary use of solar energy, is growing rapidly. However, the variable output of PV under changing weather conditions may hinder the large-scale deployment of PV. In this study, we propose a two-stage classification-prediction framework to predict contemporaneous PV power output from sky images (a so-called “nowcast”), and compare it with an end-to-end convolution neural network (CNN). The proposed framework first classifies input images into different sky conditions and then the classified images are sent to specific sub-models for PV output prediction. Two types of classifiers are developed and compared: (1) a CNN-based classifier trained on clear sky index (CSI)-labeled sky images and (2) a physics-based non-parametric classifier based on a threshold of fractional cloudiness of sky images. Different numbers of classification categories are also examined. The results suggest that the cloudiness-based classifier is more suitable than the CSI-based classifier for the framework, and the 3-class classification (i.e., sunny, cloudy, overcast) is found to be the optimal choice. We then fine-tune the cloudiness threshold for the non-parametric classifier and tailor the architecture for each sky-condition-specific sub-model. Under the best design, the proposed framework can achieve a root mean squared error (RMSE) of 2.20 kW (relative to a 30 kW rated PV array) on the test set comprising 18 complete days (9 sunny, RMSE = 0.69 kW; 9 cloudy, RMSE = 3.06 kW). Compared with the end-to-end CNN baseline model, the overall prediction performance can be improved by 6% (7% in sunny and 6% in cloudy), with 6% fewer trainable parameters needed in the architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽念柏发布了新的文献求助13
1秒前
修兮完成签到 ,获得积分10
1秒前
Jason完成签到,获得积分10
2秒前
风趣小松鼠完成签到 ,获得积分10
4秒前
szbllc完成签到,获得积分10
7秒前
8秒前
8秒前
维奈克拉完成签到,获得积分10
10秒前
11秒前
执着豌豆完成签到,获得积分10
11秒前
pbj完成签到,获得积分10
12秒前
wouldrt完成签到 ,获得积分20
12秒前
赘婿应助青稞的酒采纳,获得10
13秒前
脑洞疼应助筷子夹豆腐脑采纳,获得10
13秒前
一只肥牛完成签到 ,获得积分10
13秒前
16秒前
夜休2024完成签到 ,获得积分10
16秒前
务实莫言完成签到,获得积分10
17秒前
18秒前
19秒前
22秒前
可爱的函函应助沉静凝荷采纳,获得10
22秒前
23秒前
1254kghg发布了新的文献求助10
23秒前
舒适谷冬发布了新的文献求助30
25秒前
Criminology34应助艾妮吗采纳,获得10
25秒前
25秒前
清秀凉面完成签到 ,获得积分10
25秒前
求文献完成签到,获得积分10
26秒前
suxing发布了新的文献求助10
27秒前
成事在人307完成签到,获得积分10
28秒前
华仔应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
大聪明应助科研通管家采纳,获得10
29秒前
aldehyde应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678