多边形网格
网格生成
先验与后验
计算机科学
人工神经网络
偏微分方程
有限元法
网络拓扑
算法
应用数学
数学优化
人工智能
数学
数学分析
结构工程
操作系统
计算机图形学(图像)
工程类
认识论
哲学
作者
Zheyan Zhang,Yongxing Wang,Peter K. Jimack,He Wang
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:2
标识
DOI:10.48550/arxiv.2004.07016
摘要
We introduce a novel approach to automatic unstructured mesh generation using machine learning to predict an optimal finite element mesh for a previously unseen problem. The framework that we have developed is based around training an artificial neural network (ANN) to guide standard mesh generation software, based upon a prediction of the required local mesh density throughout the domain. We describe the training regime that is proposed, based upon the use of \emph{a posteriori} error estimation, and discuss the topologies of the ANNs that we have considered. We then illustrate performance using two standard test problems, a single elliptic partial differential equation (PDE) and a system of PDEs associated with linear elasticity. We demonstrate the effective generation of high quality meshes for arbitrary polygonal geometries and a range of material parameters, using a variety of user-selected error norms.
科研通智能强力驱动
Strongly Powered by AbleSci AI