A Novel Training Approach for Parametric Modeling of Microwave Passive Components Using Padé via Lanczos and EM Sensitivities

参数统计 稳健性(进化) 零极点图 传递函数 人工神经网络 灵敏度(控制系统) 参数化模型 计算机科学 数学 算法 控制理论(社会学) 工程类 人工智能 电子工程 生物化学 统计 化学 控制(管理) 电气工程 基因
作者
Jianan Zhang,Feng Feng,Wei Zhang,Jing Jin,Jianguo Ma,Qi‐Jun Zhang
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:68 (6): 2215-2233 被引量:28
标识
DOI:10.1109/tmtt.2020.2979445
摘要

This article proposes a novel training approach for parametric modeling of microwave passive components with respect to changes in geometrical parameters using matrix Padé via Lanczos (MPVL) and electromagnetic (EM) sensitivities. In the proposed approach, the EM responses of passive components versus frequency are represented by pole-zero-gain transfer functions. The relationships between the poles/zeros/gain in the transfer function and geometrical variables are learned by neural networks. To generate training data, we apply the MPVL algorithm to compute (or recompute) the poles/zeros each time we change the geometrical parameters. However, the indices of the poles/zeros after the recomputation may not have clear correspondences with those before the recomputation, posing additional challenges to predict the poles/zeros reliably for a new change of geometrical parameters. We propose a novel sensitivity-analysis-based pole-/zero-matching algorithm to obtain the correct correspondences between the poles/zeros at different geometrical parameter values. The proposed algorithm exploits the EM sensitivities, which provide useful information for the direction of movement of the poles/zeros, to predict the new positions of the poles/zeros for each change of geometrical parameters in the multidimensional parameter space. The predicted new positions are then used to guide the matching process of poles/zeros between different geometrical parameter values. Using the matched poles/zeros to train the neural networks allows us to have fast and reliable predictions for the poles/zeros subject to large geometrical variations, consequently increasing the accuracy and robustness of the overall model. Compared with the existing methods, the proposed approach can obtain better accuracy in challenging applications involving large geometrical variations. Three microwave examples are used to illustrate the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子李完成签到,获得积分10
1秒前
狗大王发布了新的文献求助30
1秒前
1秒前
神勇的晓灵完成签到,获得积分10
1秒前
1秒前
KONG发布了新的文献求助20
2秒前
3秒前
3秒前
刺槐发布了新的文献求助10
3秒前
3秒前
3秒前
zxc发布了新的文献求助10
4秒前
斯文败类应助JIMMY采纳,获得10
4秒前
5秒前
yike完成签到,获得积分10
5秒前
善学以致用应助liao_duoduo采纳,获得10
5秒前
高高千万发布了新的文献求助20
5秒前
6秒前
6秒前
mensa完成签到,获得积分10
6秒前
Criminology34应助缥缈纸飞机采纳,获得10
6秒前
6秒前
bin发布了新的文献求助10
6秒前
情怀应助赵富贵采纳,获得10
6秒前
图雄争霸完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
大方溪流发布了新的文献求助10
8秒前
小马甲应助xuxuux采纳,获得10
8秒前
杨杨发布了新的文献求助10
8秒前
YeeLeeLee发布了新的文献求助10
8秒前
9秒前
钮小童发布了新的文献求助10
9秒前
9秒前
安详向日葵完成签到 ,获得积分10
10秒前
10秒前
小小阿杰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731