A Novel Training Approach for Parametric Modeling of Microwave Passive Components Using Padé via Lanczos and EM Sensitivities

参数统计 稳健性(进化) 零极点图 传递函数 人工神经网络 灵敏度(控制系统) 参数化模型 计算机科学 数学 算法 控制理论(社会学) 工程类 人工智能 电子工程 生物化学 基因 统计 电气工程 化学 控制(管理)
作者
Jianan Zhang,Feng Feng,Wei Zhang,Jing Jin,Jianguo Ma,Qi‐Jun Zhang
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:68 (6): 2215-2233 被引量:28
标识
DOI:10.1109/tmtt.2020.2979445
摘要

This article proposes a novel training approach for parametric modeling of microwave passive components with respect to changes in geometrical parameters using matrix Padé via Lanczos (MPVL) and electromagnetic (EM) sensitivities. In the proposed approach, the EM responses of passive components versus frequency are represented by pole-zero-gain transfer functions. The relationships between the poles/zeros/gain in the transfer function and geometrical variables are learned by neural networks. To generate training data, we apply the MPVL algorithm to compute (or recompute) the poles/zeros each time we change the geometrical parameters. However, the indices of the poles/zeros after the recomputation may not have clear correspondences with those before the recomputation, posing additional challenges to predict the poles/zeros reliably for a new change of geometrical parameters. We propose a novel sensitivity-analysis-based pole-/zero-matching algorithm to obtain the correct correspondences between the poles/zeros at different geometrical parameter values. The proposed algorithm exploits the EM sensitivities, which provide useful information for the direction of movement of the poles/zeros, to predict the new positions of the poles/zeros for each change of geometrical parameters in the multidimensional parameter space. The predicted new positions are then used to guide the matching process of poles/zeros between different geometrical parameter values. Using the matched poles/zeros to train the neural networks allows us to have fast and reliable predictions for the poles/zeros subject to large geometrical variations, consequently increasing the accuracy and robustness of the overall model. Compared with the existing methods, the proposed approach can obtain better accuracy in challenging applications involving large geometrical variations. Three microwave examples are used to illustrate the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lu完成签到,获得积分10
1秒前
Murphy完成签到 ,获得积分10
1秒前
斯文败类应助大方嵩采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得30
2秒前
hh应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得20
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
sutharsons应助科研通管家采纳,获得200
3秒前
orixero应助科研通管家采纳,获得10
3秒前
许多知识发布了新的文献求助10
4秒前
FashionBoy应助su采纳,获得10
4秒前
4秒前
运敬完成签到 ,获得积分10
5秒前
XSB完成签到,获得积分10
5秒前
青草蛋糕完成签到 ,获得积分10
5秒前
怡然剑成完成签到,获得积分10
5秒前
5秒前
liyuchen发布了新的文献求助10
6秒前
ipeakkka完成签到,获得积分20
8秒前
马克发布了新的文献求助10
8秒前
赵OO完成签到,获得积分10
8秒前
Yon完成签到 ,获得积分10
9秒前
呆头完成签到,获得积分10
9秒前
科研通AI5应助skier采纳,获得10
10秒前
ywang发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
keyantong完成签到 ,获得积分10
16秒前
booshu完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824