A Novel Training Approach for Parametric Modeling of Microwave Passive Components Using Padé via Lanczos and EM Sensitivities

参数统计 稳健性(进化) 零极点图 传递函数 人工神经网络 灵敏度(控制系统) 参数化模型 计算机科学 数学 算法 控制理论(社会学) 工程类 人工智能 电子工程 生物化学 基因 统计 电气工程 化学 控制(管理)
作者
Jianan Zhang,Feng Feng,Wei Zhang,Jing Jin,Jianguo Ma,Qi‐Jun Zhang
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:68 (6): 2215-2233 被引量:28
标识
DOI:10.1109/tmtt.2020.2979445
摘要

This article proposes a novel training approach for parametric modeling of microwave passive components with respect to changes in geometrical parameters using matrix Padé via Lanczos (MPVL) and electromagnetic (EM) sensitivities. In the proposed approach, the EM responses of passive components versus frequency are represented by pole-zero-gain transfer functions. The relationships between the poles/zeros/gain in the transfer function and geometrical variables are learned by neural networks. To generate training data, we apply the MPVL algorithm to compute (or recompute) the poles/zeros each time we change the geometrical parameters. However, the indices of the poles/zeros after the recomputation may not have clear correspondences with those before the recomputation, posing additional challenges to predict the poles/zeros reliably for a new change of geometrical parameters. We propose a novel sensitivity-analysis-based pole-/zero-matching algorithm to obtain the correct correspondences between the poles/zeros at different geometrical parameter values. The proposed algorithm exploits the EM sensitivities, which provide useful information for the direction of movement of the poles/zeros, to predict the new positions of the poles/zeros for each change of geometrical parameters in the multidimensional parameter space. The predicted new positions are then used to guide the matching process of poles/zeros between different geometrical parameter values. Using the matched poles/zeros to train the neural networks allows us to have fast and reliable predictions for the poles/zeros subject to large geometrical variations, consequently increasing the accuracy and robustness of the overall model. Compared with the existing methods, the proposed approach can obtain better accuracy in challenging applications involving large geometrical variations. Three microwave examples are used to illustrate the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老西瓜完成签到,获得积分10
刚刚
Orange应助bestbanana采纳,获得10
1秒前
万能图书馆应助静谧180采纳,获得10
2秒前
lr发布了新的文献求助10
5秒前
momi完成签到 ,获得积分10
6秒前
7秒前
鲸落发布了新的文献求助10
12秒前
www完成签到 ,获得积分10
12秒前
12秒前
爱吃汤圆的猫完成签到 ,获得积分10
13秒前
啦啦啦发布了新的文献求助10
13秒前
可可完成签到 ,获得积分10
14秒前
14秒前
WYJ发布了新的文献求助10
16秒前
共享精神应助啦啦啦采纳,获得10
19秒前
幸福果汁完成签到,获得积分10
19秒前
十三完成签到 ,获得积分10
19秒前
19秒前
19秒前
无花果应助最牛的kangkang采纳,获得10
21秒前
evergarden完成签到 ,获得积分10
24秒前
李健应助WYJ采纳,获得10
25秒前
lhn发布了新的文献求助10
25秒前
Rvan发布了新的文献求助150
29秒前
31秒前
立华奏完成签到,获得积分10
32秒前
34秒前
JamesPei应助托尔斯泰采纳,获得10
35秒前
成熟稳重痴情完成签到,获得积分10
35秒前
丘比特应助公孙世往采纳,获得10
37秒前
Darren发布了新的文献求助50
40秒前
43秒前
小蘑菇应助艾科研采纳,获得10
43秒前
Tian完成签到 ,获得积分10
45秒前
慕青应助憨憨采纳,获得10
46秒前
48秒前
48秒前
48秒前
Airy完成签到,获得积分10
48秒前
LJL完成签到 ,获得积分10
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023