Analysis and identification of the parent coal sources of fulvic acid according to convention, spectroscopy and chemometrics

主成分分析 线性判别分析 支持向量机 模式识别(心理学) 人工智能 黄腐酸 元素分析 化学 生物系统 分析化学(期刊) 化学计量学 色谱法 数学 计算机科学 腐植酸 生物 有机化学 肥料
作者
Zhi Wang,Yong Li,Mi Zhang,Yi Qin,Kun Zhang,Baocai Li,Huifeng Zhang,Xiang Cheng
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:237: 118379-118379 被引量:4
标识
DOI:10.1016/j.saa.2020.118379
摘要

Fulvic acid (FA) is a kind of organic and complex water-soluble components mainly extracted from low rank coals with small molecular weight, active physical properties (such as cation exchange capacity, pH-buffering alkalinity) and positive biological functions. However, the performance of FA varies greatly, mainly induced by its different sources of raw coals. Thus, classifying the fulvic acid obtained from different coal samples is required. According to their chemical differences, two methods are developed in this paper to distinguish the origin of coal in China in combination with chemometric tools. First, the ash content, elemental composition, ultraviolet-visible (UV-Vis) and fluorescence spectra of sixteen fulvic acid samples from peat, lignite and weathered coal are measured and fifteen parameters are obtained from each sample. In the first Linear Discriminant Analysis (LDA) strategy, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and stepwise LDA are employed to reduce variables. A discriminant function (DF) constructed only by EEt/Bz and FI is obtained, with its accuracy verified by clustering and leave-one-out cross validation (LOOCV) with an accuracy of 87.5%. In another machine learning tactics, Pearson correlation and principal component analysis (PCA) reduce the dimensions of all variables. In the end, all sixteen samples are divided into three groups by support vector machine (SVM), with an accuracy of 100%. In conclusion, based on the differences in the chemical composition of FA from different sources, the method for combining UV-Vis and fluorescence with LDA or SVM can effectively classify the coal sources of FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_nVqwxL发布了新的文献求助10
2秒前
一颗馒头完成签到,获得积分10
2秒前
wyhhh发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
zhongu应助冷艳的竺采纳,获得10
3秒前
不吃香菜完成签到,获得积分10
4秒前
4秒前
聪慧的凝海完成签到 ,获得积分10
4秒前
4秒前
mingyue完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
beibeimao完成签到 ,获得积分10
5秒前
6秒前
~~完成签到,获得积分10
6秒前
NexusExplorer应助孤独的AD钙采纳,获得10
6秒前
实验大牛完成签到,获得积分10
7秒前
小鹿完成签到,获得积分20
7秒前
CC完成签到,获得积分10
7秒前
wade2016发布了新的文献求助10
7秒前
受伤的水星完成签到,获得积分10
8秒前
0911wxt发布了新的文献求助10
8秒前
9秒前
姽稚完成签到,获得积分10
9秒前
希望天下0贩的0应助wyhhh采纳,获得10
9秒前
wxy发布了新的文献求助10
9秒前
alex完成签到,获得积分10
10秒前
10秒前
洛莉塔完成签到,获得积分10
11秒前
虫虫发布了新的文献求助10
11秒前
lllllll完成签到,获得积分10
11秒前
有魅力荟发布了新的文献求助10
12秒前
张张张完成签到,获得积分10
12秒前
aga完成签到,获得积分10
12秒前
独特的春完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307802
求助须知:如何正确求助?哪些是违规求助? 2941301
关于积分的说明 8502750
捐赠科研通 2615835
什么是DOI,文献DOI怎么找? 1429200
科研通“疑难数据库(出版商)”最低求助积分说明 663673
邀请新用户注册赠送积分活动 648644