Acceleration Feature Extraction of Human Body Based on Wearable Devices

加速度 可穿戴计算机 计算机科学 卡尔曼滤波器 滤波器(信号处理) 特征(语言学) 编码(集合论) 集合(抽象数据类型) 特征提取 可穿戴技术 人工智能 遗传算法 计算机视觉 实时计算 机器学习 嵌入式系统 物理 哲学 程序设计语言 经典力学 语言学
作者
Zhenzhen Huang,Qiang Niu,Ilsun You,Giovanni Pau
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:14 (4): 924-924 被引量:6
标识
DOI:10.3390/en14040924
摘要

Wearable devices used for human body monitoring has broad applications in smart home, sports, security and other fields. Wearable devices provide an extremely convenient way to collect a large amount of human motion data. In this paper, the human body acceleration feature extraction method based on wearable devices is studied. Firstly, Butterworth filter is used to filter the data. Then, in order to ensure the extracted feature value more accurately, it is necessary to remove the abnormal data in the source. This paper combines Kalman filter algorithm with a genetic algorithm and use the genetic algorithm to code the parameters of the Kalman filter algorithm. We use Standard Deviation (SD), Interval of Peaks (IoP) and Difference between Adjacent Peaks and Troughs (DAPT) to analyze seven kinds of acceleration. At last, SisFall data set, which is a globally available data set for study and experiments, is used for experiments to verify the effectiveness of our method. Based on simulation results, we can conclude that our method can distinguish different activity clearly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Raye采纳,获得10
刚刚
波波完成签到,获得积分10
刚刚
刚刚
夜尽天明应助琪哒采纳,获得10
刚刚
1秒前
1秒前
咸鱼发布了新的文献求助10
1秒前
1秒前
善学以致用应助WANGJD采纳,获得10
2秒前
PigaChu发布了新的文献求助10
2秒前
Haries完成签到,获得积分10
2秒前
tlc_191026完成签到,获得积分10
2秒前
小伍同学完成签到,获得积分10
3秒前
伊雪儿完成签到,获得积分10
3秒前
科研通AI2S应助077采纳,获得10
4秒前
杨知意完成签到,获得积分10
4秒前
nightmoonsun发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
6秒前
6秒前
6秒前
在水一方应助吴帆采纳,获得10
7秒前
高分子物理不会完成签到,获得积分10
7秒前
Jessica完成签到,获得积分20
7秒前
善学以致用应助clone2012采纳,获得30
7秒前
雨张发布了新的文献求助20
7秒前
8秒前
9秒前
9秒前
红柚完成签到,获得积分10
9秒前
豪豪完成签到,获得积分10
10秒前
一一完成签到 ,获得积分10
10秒前
wyc完成签到,获得积分10
11秒前
不想干活应助yzbbb采纳,获得10
11秒前
bkagyin应助研友_89jWGL采纳,获得10
11秒前
吴圳完成签到,获得积分20
12秒前
14秒前
哲别发布了新的文献求助10
14秒前
科目三应助lili采纳,获得10
14秒前
赘婿应助蛋蛋采纳,获得10
14秒前
nightmoonsun完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426