Estimating normal moveout velocity using the recurrent neural network

正常时差 循环神经网络 计算机科学 人工神经网络 计算 算法 期限(时间) 弹道 反射(计算机编程) 集合(抽象数据类型) 过程(计算) 人工智能 物理 天文 操作系统 量子力学 偏移量(计算机科学) 程序设计语言
作者
Reetam Biswas,Anthony Vassiliou,Rodney Stromberg,Mrinal K. Sen
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:7 (4): T819-T827 被引量:15
标识
DOI:10.1190/int-2018-0243.1
摘要

Machine learning (ML) has recently gained immense popularity because of its successful application in complex problems. It develops an abstract relation between the input and output. We have evaluated the application of ML to the most basic seismic processing of normal moveout (NMO) correction. The arrival times of reflection events in a common midpoint (CMP) gather follow a hyperbolic trajectory; thus, they require a correction term to flatten the CMP gather before stacking. This correction term depends on an rms velocity, also referred to as the NMO velocity. In general, NMO velocity is estimated using the semblance measures and picking the peaks in the velocity panel. This process requires a lot of human intervention and computation time. We have developed a novel method using one of the tools based on an ML- approach and applied to the NMO velocity estimation problem. We use the recurrent neural network (RNN) to estimate the NMO velocity directly from the seismic data. The input to the network is a seismic gather and corresponding precalculated NMO velocity (as prelabeled data set) to flatten the gather. We first train the network to develop a relationship between the input gathers (before NMO correction) and the corresponding NMO velocities for a few CMPs as a supervised learning process. Adam optimization algorithm is used to train the RNN. The output from the network is then compared against the correct NMO velocity. The error between the two velocities is then used to update the weight of the neurons and to minimize the mean-squared error between the two velocities. After the network is trained, it can be used to calculate the NMO velocity for the rest of the seismic gathers. We evaluate our method on a noisy data set from Poland. We used only 10% of the CMPs to train the network, and then we used the trained network to predict NMO velocity for the remaining CMP locations. The stack section obtained by using RNN-generated NMO velocities is nearly identical to that obtained by the conventional semblance method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
L1nJ1nG完成签到,获得积分20
3秒前
Mine发布了新的文献求助10
3秒前
音悦台完成签到,获得积分10
4秒前
十二完成签到 ,获得积分10
4秒前
牙套狗狗完成签到 ,获得积分20
5秒前
醍醐不醒发布了新的文献求助10
5秒前
5秒前
罗小学发布了新的文献求助10
6秒前
6秒前
zhao发布了新的文献求助30
6秒前
6秒前
瑶桑发布了新的文献求助10
7秒前
Lucas应助爆米花采纳,获得10
8秒前
shenwei完成签到 ,获得积分10
8秒前
忭博士发布了新的文献求助10
9秒前
王康发布了新的文献求助10
9秒前
9秒前
xxx发布了新的文献求助10
10秒前
Mine完成签到,获得积分10
11秒前
罗小学完成签到,获得积分10
12秒前
12秒前
12秒前
chengmin发布了新的文献求助10
13秒前
lyh完成签到,获得积分10
14秒前
14秒前
14秒前
90yied发布了新的文献求助10
15秒前
李爱国应助SDSD采纳,获得10
15秒前
传统的大白完成签到,获得积分10
15秒前
华仔应助luna采纳,获得10
16秒前
科研通AI5应助NGYUNGKEI采纳,获得30
16秒前
瑶咕隆咚完成签到,获得积分10
16秒前
希望天下0贩的0应助Coatings采纳,获得10
17秒前
上官若男应助lllllll采纳,获得10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312