X射线光电子能谱
阴极
插层(化学)
密度泛函理论
电解质
离子
电极
材料科学
化学工程
电池(电)
铝
电流密度
纳米技术
光电子学
化学
无机化学
物理化学
复合材料
计算化学
有机化学
工程类
物理
功率(物理)
量子力学
作者
Zhongchen Zhao,Zhengqiang Hu,Qiang Li,Hongsen Li,Xiao Zhang,Yidan Zhuang,Feng Wang,Guihua Yu
出处
期刊:Nano Today
[Elsevier]
日期:2020-06-01
卷期号:32: 100870-100870
被引量:93
标识
DOI:10.1016/j.nantod.2020.100870
摘要
Owing to the high abundance, inherent safety, and three-electron redox properties of aluminum, aluminum-ion batteries (AIBs) are promising candidates for the next-generation battery technologies with high energy-to-price ratio. Despite recent great progress in finding appropriate electrolyte, an on-going research focus of the AIBs remains to be exploiting host electrodes for the large aluminum (complex) ions. Herein, a star-shaped two-dimensional (2D) WS2 microsheet assembly cathode substitute is prepared and applied in AIBs for the first time. The in-depth study with density functional theory (DFT) calculations, ex-situ X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) reveals an explicit intercalation mechanism of chloroaluminate anions (AlCl4−) in the WS2 electrode. Benefiting from their structural configuration, the star-shaped 2D WS2 microsheet assemblies display a highly reversible capacity of 254 mA h g−1 at a current density of 0.1 A g−1, a superior rate capability (86 mA h g−1 at 5 A g−1), and a favorable cycling stability (119 mA h g−1 remained after 500 cycles at 1 A g−1). The synthetic approach and the proposed mechanism could pave the way for the further development of high-performance AIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI