聚合物
吸附
材料科学
溶解
化学工程
朗缪尔吸附模型
盐酸
金属
原材料
工业废物
铝
废物管理
冶金
化学
粉煤灰
复合材料
有机化学
工程类
作者
Chao Wang,Zuoyi Yang,Weifeng Song,Yongkeng Zhong,Mengge Sun,Tao Gan,Bingqin Bao
标识
DOI:10.1016/j.jclepro.2021.128203
摘要
In this study, novel geopolymers based on solid wastes (coal gangue and red mud) were used in the adsorption of heavy metals (Pb2+ and Cu2+) from solution. The correlations between the composition and quantity of the geopolymer gels and heavy metal adsorption were investigated under various conditions using hydrochloric acid dissolution and spectroscopic techniques. The results showed that the geopolymer gel positively correlated with the Pb2+ and Cu2+ adsorption capacities in the absence of external silica and aluminum. Moreover, external silica and aluminum sources promoted Al2O3 and SiO2 dissolution in the raw materials, which increased and decreased the specific surface areas, respectively. All of the tested geopolymers exhibited Pb2+ and Cu2+ adsorption based on the Langmuir isotherm and the pseudo-second-order kinetic model, with adsorption maxima of 137.7 and 90 mg g−1, respectively. This research first determined the correlation between the geopolymer gel and its heavy metal adsorption performance, and demonstrated industrial waste-based geopolymers could be effectively applied for the removal of heavy metal which can help reduce the burden of waste management and provide new insights about the resource recovery of solid wastes.
科研通智能强力驱动
Strongly Powered by AbleSci AI