Demonstrating the impact of Band Gap Modilation on Semiconductor Metal Oxide Gas-sensing Performance

半导体 材料科学 带隙 光电子学 氧化物 纳米技术 电导率 吸附 化学 物理化学 有机化学 冶金
作者
Tianshuang Wang,Geyu Lu
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (63): 1693-1693 被引量:1
标识
DOI:10.1149/ma2021-01631693mtgabs
摘要

Introduction Gas sensors as the front-end device is the core component of indoor air quality monitoring system and plays an important role in detecting toxic gases. Due to various characteristics of simple structure, all solid state, well stability, and low cost, the semiconducting metal oxides (SMOs) based gas sensors have showed potential [1,2]. Recently, some researches have found that the alteration of electronic band structure will impact the gas sensing characteristics via controlling the charge carrier concentration and enhancing the surface adsorbed oxygen species [2-5]. Herein, we reported the synthesis of honeycomb-like 3D inverse opal (IO) CdO-CdGa2O4 microspheres (MS) by using the combination of the one-step USP method with self-assembled S-PS spheres template. Such a novel structure provides both inside and outside reaction sites with high gas accessibility. Since the CdGa2O4 is an n-type semiconductor metal oxide with suitable band gap, and have been found to be a promising material as a transparent electronic conductor [6], we use it as base material of sensitive element. Importantly, the incorporation of CdO with narrow band gap (2.15-2.7 eV) and high electrical conductivity [7] is implied to deeply investigate the relationship between sensing materials’ electronic band structure and gas sensing characteristics. Accordingly, we successfully prepare 3D IO CdO-CdGa2O4 MS based chemiresistor sensor with alterable selectivity and high sensitivity via tuning the ratio of Cd/Ga. Results and Conclusions In order to demonstrate the sensing capability of the 3D IO CdGa2O4, CdO-CdGa2O4 MS based gas sensor, we measure their gas sensing response to 100 ppm benzene, toluene, acetone, methanol, formaldehyde, and ethanol, as well as 1 ppm NH3, CH3, H2S, CO, SO2, and NO2 at the range of 175-275 °C, respectively. As shown in Figure 1(A)-(C), the CdGa2O4 based gas sensor exhibits the highest response to 100 ppm formaldehyde at 225 °C, however, after adding of CdO element, the CdO-CdGa2O4 based gas sensor shows lower sensitivity to formaldehyde than primary CdGa2O4 at 225 °C, and possesses higher sensitivity to low concentration of NO2 at 175 °C. Fig.1 (A-C) Gas responses of the 3D IO CdGa2O4, CdO-CdGa2O4 MS based gas sensor to various gases at 175-275 °C, respectively. The UV-vis absorption spectra of the CdGa2O4, CdO-CdGa2O4, and Cd-abundant CdO-CdGa2O4 samples show continuous red shifts of absorption edges with increasing CdO element content (Figure 2(A)), suggesting an decrease in band gap. In addition, the band gaps of all above samples can be calculated from the transformation of UV-vis diffuse reflectance spectra by utilizing the Tauc plot equation (Figure 2(B)). The calculated results further show that the band gaps tend to be narrower values compared with incorporation of CdO (from 4.16 to 2.03 eV). Thus, the baseline resistances in air of Cd-abundant CdO-CdGa2O4 sensor is the lowest (Figure 2(C)). Accordingly, this study indicates that the gas-sensing mechanism of semiconductor metal oxide chemiresistor should consider electron energy level structure. Meantime, we will further study this relationship in subsequent experiments based on above analysis. Fig. 2 (A) UV/visible diffuse reflection spectra and (B) corresponding band gaps of CdGa2O4, CdO-CdGa2O4, and Cd-abundant CdO-CdGa2O4 samples; (C) Resistance in air of gas sensors based on CdGa2O4, CdO-CdGa2O4, and Cd-abundant CdO-CdGa2O4 at 200 °C. References [1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems. 29 (2013) 1645-1660. [2] S. Y. Jeong, J. S. Kim, J. H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction, Adv. Mater. e2002075 (2020). [3] H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors and Actuators B: Chemical. 192 (2014) 607-627. [4] T. Wang, B. Jiang, Q. Yu, X. Kou, P. Sun, F. Liu, H. Lu, X. Yan, G. Lu, Realizing the control of electronic energy level structure and gas-sensing selectivity over heteroatom-doped In2O3 spheres with an inverse opal microstructure. ACS applied materials & interfaces. 11 (2019) 9600-9611. [5] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceramics. 7 (2001) 143-167. [6] X. Chu, C. Zheng, Preparation and gas-sensing properties of CdGa2O4 semiconductors, Mater. Chem. Phy. 88 (2004) 110-112. [7] T. K. Pathak, J. K. Rajput, V. Kumar, L. P. Purohit, H. C. Swart, R. E. Kroon, Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method, J. Colloid Inter. Sci. 487 (2017) 378-387. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李爱国应助不安的橘子采纳,获得10
2秒前
张冉发布了新的文献求助10
3秒前
点点完成签到,获得积分10
3秒前
4秒前
小艺完成签到,获得积分20
5秒前
Catalina_S应助kxawyy采纳,获得10
6秒前
6秒前
孟越关注了科研通微信公众号
7秒前
科研小白完成签到,获得积分10
7秒前
8秒前
Li梨发布了新的文献求助10
8秒前
Lucas应助小八统治世界采纳,获得10
9秒前
verdugo完成签到 ,获得积分10
10秒前
闲来逛逛007完成签到 ,获得积分10
10秒前
10秒前
11秒前
司空雨筠完成签到,获得积分10
11秒前
高公子发布了新的文献求助10
11秒前
12秒前
捏捏捏发布了新的文献求助10
13秒前
xixi完成签到,获得积分10
13秒前
14秒前
15秒前
霜烬染发布了新的文献求助10
15秒前
乐乐是一只大黄面包完成签到,获得积分10
16秒前
shendu发布了新的文献求助10
16秒前
17秒前
18秒前
Akim应助微笑老九采纳,获得10
18秒前
18秒前
18秒前
Meyako应助指哪打哪采纳,获得10
19秒前
fuiee完成签到,获得积分10
19秒前
20秒前
深情安青应助闻人华忆采纳,获得10
20秒前
21秒前
无聊完成签到 ,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055