Efficient Cross-Modality Graph Reasoning for RGB-Infrared Person Re-Identification

计算机科学 人工智能 模态(人机交互) 特征向量 特征(语言学) 背景(考古学) RGB颜色模型 地点 图形 模式识别(心理学) 计算机视觉 自然语言处理 理论计算机科学 生物 古生物学 哲学 语言学
作者
Jian Feng,Feng Chen,Yimu Ji,Fei Wu,Jing Sun
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:28: 1425-1429 被引量:18
标识
DOI:10.1109/lsp.2021.3093865
摘要

The modality and pose variance between RGB and infrared (IR) images are two key challenges for RGB-IR person re-identification. Existing methods mainly focus on leveraging pixel or feature alignment to handle the intra-class variations and cross-modality discrepancy. However, these methods are hard to keep semantic identity consistency between global and local representation, which the consistency is important for the cross-modality pedestrian re-identification task. In this work, we propose a novel cross-modality graph reasoning method (CGRNet) to globally model and reason over relations between modalities and context, and to keep semantic identity consistency between global and local representation. Specifically, we propose a local modality-similarity module to put the distribution of modality-specific features into a common subspace without losing identity information. Besides, we squeeze the input feature of RGB and IR images into a channel-wise global vector, and through graph reasoning, the identity relationship and modality relationship in each vector are inferred. Extensive experiments on two datasets demonstrate the superior performance of our approach over the existing state-of-the-art. The code is available at https://github.com/fegnyujian/CGRNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛武发布了新的文献求助10
刚刚
科研通AI6应助xiiixixiixi采纳,获得10
1秒前
wrh发布了新的文献求助10
2秒前
2秒前
2秒前
Salut发布了新的文献求助10
3秒前
bobo完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
深情安青应助咚咚采纳,获得10
6秒前
ruru发布了新的文献求助10
6秒前
7秒前
ontheway发布了新的文献求助10
7秒前
yo完成签到 ,获得积分10
8秒前
顾末完成签到,获得积分10
10秒前
Alice0210完成签到,获得积分10
12秒前
852应助666采纳,获得10
12秒前
jingsihan发布了新的文献求助10
13秒前
nick完成签到,获得积分10
13秒前
薛武发布了新的文献求助10
13秒前
aafrr完成签到 ,获得积分10
14秒前
yun关闭了yun文献求助
14秒前
芊瑶完成签到,获得积分10
14秒前
顾矜应助Iaint采纳,获得30
15秒前
17秒前
大模型应助熙慕采纳,获得10
17秒前
geopotter完成签到 ,获得积分10
17秒前
17秒前
coolcy完成签到,获得积分10
18秒前
18秒前
乐乐应助stk采纳,获得10
19秒前
情怀应助0_08采纳,获得10
19秒前
隐形曼青应助薛武采纳,获得10
20秒前
所所应助薛武采纳,获得10
20秒前
CodeCraft应助ontheway采纳,获得10
20秒前
华仔应助ontheway采纳,获得10
20秒前
21秒前
xwc发布了新的文献求助10
21秒前
千辞完成签到 ,获得积分10
23秒前
共享精神应助Lucy采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643824
求助须知:如何正确求助?哪些是违规求助? 4762069
关于积分的说明 15022410
捐赠科研通 4802071
什么是DOI,文献DOI怎么找? 2567294
邀请新用户注册赠送积分活动 1524947
关于科研通互助平台的介绍 1484470