SOLO: A Simple Framework for Instance Segmentation

人工智能 计算机科学 分割 简单(哲学) 图像分割 计算机视觉 模式识别(心理学) 认识论 哲学
作者
Xinlong Wang,Rufeng Zhang,Chunhua Shen,Tao Kong,Lei Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:41
标识
DOI:10.1109/tpami.2021.3111116
摘要

Compared to many other dense prediction tasks, e.g., semantic segmentation, it is the arbitrary number of instances that has made instance segmentation much more challenging. In order to predict a mask for each instance, mainstream approaches either follow the "detect-then-segment" strategy (e.g., Mask R-CNN), or predict embedding vectors first then cluster pixels into individual instances. In this paper, we view the task of instance segmentation from a completely new perspective by introducing the notion of "instance categories", which assigns categories to each pixel within an instance according to the instance's location. With this notion, we propose segmenting objects by locations (SOLO), a simple, direct, and fast framework for instance segmentation with strong performance. We derive a few SOLO variants (e.g., Vanilla SOLO, Decoupled SOLO, Dynamic SOLO) following the basic principle. Our method directly maps a raw input image to the desired object categories and instance masks, eliminating the need for the grouping post-processing or the bounding box detection. Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy, while being considerably simpler than the existing methods. Besides instance segmentation, our method yields state-of-the-art results in object detection (from our mask byproduct) and panoptic segmentation. We further demonstrate the flexibility and high-quality segmentation of SOLO by extending it to perform one-stage instance-level image matting. Code is available at: https://git.io/AdelaiDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cookie发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Nicho发布了新的文献求助10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
T拐拐发布了新的文献求助10
6秒前
7秒前
大模型应助CC采纳,获得10
7秒前
情怀应助李志华采纳,获得10
8秒前
150发布了新的文献求助10
10秒前
11秒前
11秒前
ymx完成签到 ,获得积分10
11秒前
14秒前
17秒前
17秒前
17秒前
huenguyenvan完成签到,获得积分10
17秒前
王小小发布了新的文献求助10
18秒前
儒雅的葶完成签到,获得积分10
19秒前
CC发布了新的文献求助10
19秒前
科研通AI2S应助欢欢采纳,获得10
19秒前
李志华发布了新的文献求助10
20秒前
狂奔的蜗牛完成签到,获得积分10
21秒前
共享精神应助HaiFeng采纳,获得10
21秒前
张磊发布了新的文献求助10
23秒前
29秒前
斯文败类应助吕lvlvlvlvlv采纳,获得10
31秒前
ding应助千里独行侠采纳,获得10
32秒前
32秒前
哈哈哈发布了新的文献求助30
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637