纳米圆盘
磷脂
膜
化学
色谱法
膜蛋白
生物物理学
脂质双层
脂质体
增溶
双层
生物化学
生物
作者
Kerry M. Strickland,Kasahun Neselu,Arshay J. Grant,Carolann Espy,Nael A. McCarty,Ingeborg Schmidt‐Krey
出处
期刊:Methods in molecular biology
日期:2021-01-01
卷期号:: 21-35
被引量:2
标识
DOI:10.1007/978-1-0716-1394-8_2
摘要
Reconstitution of detergent-solubilized membrane proteins into phospholipid bilayers allows for functional and structural studies under close-to-native conditions that greatly support protein stability and function. Here we outline the detailed steps for membrane protein reconstitution to result in proteoliposomes and nanodiscs. Reconstitution can be achieved via a number of different strategies. The protocols for preparation of proteoliposomes use detergent removal via dialysis or via nonpolar polystyrene beads, or a mixture of the two methods. In this chapter, the protocols for nanodiscs apply polystyrene beads only. Proteoliposome preparation methods allow for substantial control of the lipid-to-protein ratio, from minimal amounts of phospholipid to high concentrations, type of phospholipid, and mixtures of phospholipids. In addition, dialysis affords a fairly large degree of control and variation of parameters such as rate of reconstitution, temperature, buffer conditions, and proteoliposome size. For the nanodisc approach, which is highly advantageous for ensuring equal access to both membrane sides of the protein as well as fast reconstitution of only a single membrane protein into a well-defined bilayer environment in each nanodisc, the protocols outline how a number of these parameters are more restricted in comparison to the proteoliposome protocols.
科研通智能强力驱动
Strongly Powered by AbleSci AI