High-precision recognition of wheat mildew degree based on colorimetric sensor technique combined with multivariate analysis

学位(音乐) 多元统计 霉病 多元分析 比色法 数学 统计 化学 色谱法 声学 物理 有机化学
作者
Jianan Wang,Hui Jiang,Quansheng Chen
出处
期刊:Microchemical Journal [Elsevier]
卷期号:168: 106468-106468 被引量:14
标识
DOI:10.1016/j.microc.2021.106468
摘要

• Proposing a high-precision method for recognition of wheat mildew degree. • Preparing a colorimetric sensor to capture the odor information of wheat samples with different degrees of mildew. • Building identification models (LDA, KNN, ELM, SVM) of wheat mildew using sensor image features. • The SVM model has the best generalization performance with a 100% correct identification rate. To achieve in-situ non-destructive monitoring of grain mildew degree and ensure food safety, this study took wheat as the object and carried out high-precision qualitative identification of wheat mildew degree based on colorimetric sensor technique. The gas chromatography-mass spectrometry (GC–MS) technique was used to analyze the volatile components of wheat samples with different levels of mold, and to determine the components and contents of indicative volatile substances. Accordingly, we choose 12 kinds of color materials which are sensitive to specific color reaction to prepare a set of colorimetric sensors. The odor information of wheat samples with different degrees of mildew was captured using the colorimetric sensor and display it in imaging. The principal component analysis (PCA) was performed on the color feature components of the preprocessed sensor difference image to achieve compression of sensor image data and feature reduction. Different linear (KNN; LDA) and non-linear (ELM; SVM) chemometric methods were used to create a high-quality qualitative identification models for wheat mildew based on sensor image features, and in the process of model calibration, the best parameters and the quantity of principal components (PCs) of the model are determined by the five-fold cross-validation method. Based on final results, the SVM identification model achieved a 100% correct identification rate for independent samples. The results of this study show that it is viable to monitor wheat mildew degree with high precision by using the colorimetric sensor technology with strong specificity combined with appropriate stoichiometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violetlishu完成签到 ,获得积分10
刚刚
zy完成签到 ,获得积分10
刚刚
1秒前
熊二完成签到,获得积分10
1秒前
云端完成签到,获得积分10
1秒前
KY没烦恼发布了新的文献求助10
1秒前
2秒前
领导范儿应助123采纳,获得10
2秒前
唐唐的猫咪完成签到 ,获得积分10
3秒前
顾念完成签到 ,获得积分10
3秒前
勇者先享受生活完成签到 ,获得积分10
3秒前
铜锣烧完成签到,获得积分10
3秒前
温柔海冬关注了科研通微信公众号
3秒前
科研小民工应助leeee采纳,获得200
3秒前
天蓝色与柠檬黄完成签到,获得积分20
4秒前
4秒前
chengyulin完成签到 ,获得积分10
4秒前
华仔应助快乐科研采纳,获得10
4秒前
LIU发布了新的文献求助10
5秒前
宇文无施发布了新的文献求助10
5秒前
火星上的蓝血完成签到,获得积分10
6秒前
6秒前
cheng举报库鲁西求助涉嫌违规
6秒前
体育爱好者完成签到,获得积分10
6秒前
6秒前
6秒前
落后的冬寒完成签到,获得积分10
7秒前
Orange应助颜苏采纳,获得10
7秒前
舒心如凡完成签到,获得积分10
7秒前
7秒前
老实易蓉完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
李孟佯完成签到,获得积分20
10秒前
攀攀发布了新的文献求助10
10秒前
10秒前
10秒前
早起困困完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3545222
求助须知:如何正确求助?哪些是违规求助? 3122418
关于积分的说明 9352069
捐赠科研通 2821058
什么是DOI,文献DOI怎么找? 1550893
邀请新用户注册赠送积分活动 722851
科研通“疑难数据库(出版商)”最低求助积分说明 713371