Detection of frozen pork freshness by fluorescence hyperspectral image

高光谱成像 偏最小二乘回归 荧光 化学 近红外光谱 荧光光谱法 人工智能 计算机科学 分析化学(期刊) 色谱法 数学 统计 光学 物理
作者
Qibin Zhuang,Yankun Peng,Deyong Yang,Yali Wang,Renhong Zhao,Kuanglin Chao,Qinghui Guo
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:316: 110840-110840 被引量:62
标识
DOI:10.1016/j.jfoodeng.2021.110840
摘要

Real-time detection of frozen meat freshness without thawing is important. This study investigates inspection of frozen pork quality attributes without thawing using fluorescence hyperspectral imaging (HSI). Partial least squares regression (PLSR) models were developed based on fluorescence spectra for total volatile basic nitrogen (TVB-N), pH, L*, a*, and b*, and compared with PLSR models based on visible/near-infrared (Vis/NIR) HSI of the same samples. Competitive adaptive reweighted sampling was used to select key fluorescence wavelengths related to each indicator. The correlation coefficients of prediction (Rp) of the models established by fluorescence spectra, with optimal pre-treatment for TVB-N, pH, L*, a*, and b*, were 0.9447, 0.9037, 0.6602, 0.8686, and 0.8699, respectively. Except for L*, fluorescence HSI-based model performance was better than that of Vis-NIR HSI. Model performance was further improved using selected key wavelengths. Results demonstrated that fluorescence HSI could determine freshness indicators of frozen pork without thawing. • Fluorescence HSI was used for the first time to assess frozen pork freshness. • Relationships between fluorescence peaks and freshness indicators were recognized. • PLSR models were compared based on fluorescence HSI and Vis/NIR HSI. • Key wavelengths were selected for each freshness indicators of frozen pork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助snowdrift采纳,获得10
刚刚
刚刚
刚刚
jy完成签到 ,获得积分10
刚刚
NexusExplorer应助立马毕业采纳,获得10
1秒前
在水一方应助123采纳,获得10
2秒前
科目三应助白华苍松采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
CipherSage应助千幻采纳,获得10
3秒前
3秒前
dddddd完成签到,获得积分10
3秒前
桂魄发布了新的文献求助10
3秒前
年轻的咖啡豆完成签到,获得积分20
4秒前
4秒前
绿洲发布了新的文献求助10
4秒前
4秒前
5秒前
aDou完成签到 ,获得积分10
5秒前
脑洞疼应助bc采纳,获得10
5秒前
NEMO发布了新的文献求助10
5秒前
李健应助mammoth采纳,获得20
5秒前
熊boy发布了新的文献求助10
5秒前
天真思雁发布了新的文献求助10
5秒前
6秒前
情怀应助蔡蔡不菜菜采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
7秒前
CipherSage应助MADKAI采纳,获得10
7秒前
乐乐应助MADKAI采纳,获得10
7秒前
ChangSZ应助MADKAI采纳,获得10
7秒前
乐乐应助MADKAI采纳,获得10
7秒前
小飞七应助MADKAI采纳,获得10
7秒前
Akim应助MADKAI采纳,获得20
7秒前
科研通AI5应助MADKAI采纳,获得10
7秒前
充电宝应助MADKAI采纳,获得10
7秒前
buno应助MADKAI采纳,获得10
7秒前
7秒前
小唐完成签到 ,获得积分0
9秒前
思源应助年轻的咖啡豆采纳,获得10
9秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762