发光体
电化学发光
化学
检出限
阳极
生物分析
生物传感器
纳米技术
发光
组合化学
电极
色谱法
光电子学
物理化学
材料科学
生物化学
作者
Xiaoyan Wang,Siyu Xiao,Changping Yang,Congyi Hu,Xue Wang,Shu Jun Zhen,Cheng Zhi Huang,Yuan Fang Li
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2021-10-12
卷期号:93 (42): 14178-14186
被引量:48
标识
DOI:10.1021/acs.analchem.1c02881
摘要
Developing a coreactant-free ratiometric electrochemiluminescence (ECL) strategy based on a single luminophore to achieve more accurate and sensitive microRNA (miRNA) detection is highly desired. Herein, utilizing zinc-metal organic frameworks (Zn-MOFs) as the single luminophore, a novel dual-potential ratiometric ECL biosensor was constructed for ultrasensitive detection of miRNA-133a. The as-prepared Zn-MOFs exhibited simultaneous cathode and anode ECL emission. Furthermore, the Zn-MOFs were confirmed to be a multichannel ECL sensing platform with excellent annihilation and coreactant ECL emission. The corresponding ECL behaviors were investigated in detail. Benefiting from the hybridization chain reaction (HCR) amplification technology, N,N-diethylethylenediamine (DEAEA) was modified on hairpin DNA, and the gained products loaded with quantities of DEAEA enhanced the anodic ECL intensity of Zn-MOFs. In the presence of miRNA-133a, the ECL intensity ratio of anode to cathode (Ia/Ic) was significantly increased, which realized the ultrasensitive ratiometric detection of miRNA-133a. In addition, without an exogenous coreactant, the biosensor revealed superb accuracy and stability. Under optimal conditions, the detection linearity of miRNA-133a was from 50 aM to 50 fM with a low detection limit of 35.8 aM (S/N = 3). This is the first work to use Zn-MOFs as a single emitter for reliable ratiometric ECL bioanalysis, which provides a new perspective for fabricating a ratiometric ECL biosensor platform.
科研通智能强力驱动
Strongly Powered by AbleSci AI