Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations

水模型 分子动力学 水的性质 统计物理学 极化率 溶剂化 基础(线性代数) 生物系统 计算机科学 点(几何) 生化工程 化学 物理 计算化学 数学 溶剂 分子 生物 工程类 有机化学 几何学
作者
Sachini P. Kadaoluwa Pathirannahalage,Nastaran Meftahi,Aaron Elbourne,Alessia C. G. Weiss,C. F. McConville,Agı́lio A. H. Pádua,David A. Winkler,Margarida Costa Gomes,Tamar L. Greaves,Tu C. Le,Quinn A. Besford,Andrew J. Christofferson
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (9): 4521-4536 被引量:145
标识
DOI:10.1021/acs.jcim.1c00794
摘要

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter–property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助称心仇血采纳,获得10
刚刚
1秒前
1秒前
水何澹澹完成签到,获得积分0
1秒前
鲁班7号发布了新的文献求助10
1秒前
2秒前
快乐吗猪完成签到 ,获得积分10
2秒前
3秒前
AI算法攻城狮完成签到 ,获得积分10
4秒前
CodeCraft应助wst采纳,获得10
4秒前
沉静的小熊猫完成签到,获得积分10
4秒前
zhangxr完成签到,获得积分10
4秒前
科研通AI5应助zjh采纳,获得10
5秒前
英俊的铭应助斯文墨镜采纳,获得10
5秒前
周新运完成签到,获得积分10
5秒前
小席完成签到,获得积分10
5秒前
5秒前
楼梯口无头女孩完成签到,获得积分10
5秒前
6秒前
顾矜应助热心市民小红花采纳,获得10
6秒前
李爱国应助武傲翔采纳,获得10
7秒前
8秒前
8秒前
8秒前
HonamC完成签到,获得积分10
10秒前
科目三应助幽梦挽歌采纳,获得10
10秒前
11秒前
11秒前
11秒前
科研通AI2S应助一杯双皮奶采纳,获得10
12秒前
短巷发布了新的文献求助10
13秒前
千思发布了新的文献求助10
13秒前
Yolanda发布了新的文献求助10
13秒前
小茗同学完成签到 ,获得积分10
13秒前
13秒前
搜集达人应助谨慎的向南采纳,获得10
14秒前
康康发布了新的文献求助10
14秒前
fagfagsf完成签到,获得积分10
14秒前
15秒前
喻箴完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742