Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations

水模型 分子动力学 水的性质 统计物理学 极化率 溶剂化 基础(线性代数) 生物系统 计算机科学 点(几何) 生化工程 化学 物理 计算化学 数学 溶剂 分子 生物 工程类 有机化学 几何学
作者
Sachini P. Kadaoluwa Pathirannahalage,Nastaran Meftahi,Aaron Elbourne,Alessia C. G. Weiss,C. F. McConville,Agı́lio A. H. Pádua,David A. Winkler,Margarida Costa Gomes,Tamar L. Greaves,Tu C. Le,Quinn A. Besford,Andrew J. Christofferson
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (9): 4521-4536 被引量:175
标识
DOI:10.1021/acs.jcim.1c00794
摘要

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter–property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老大蒂亚戈应助潇湘雪月采纳,获得10
2秒前
2秒前
4秒前
4秒前
kk完成签到,获得积分10
4秒前
5秒前
HOPE发布了新的文献求助10
5秒前
AAA完成签到,获得积分10
7秒前
Singularity应助讨厌科研采纳,获得10
7秒前
古月发布了新的文献求助10
8秒前
9秒前
33发布了新的文献求助10
9秒前
汉堡包应助于平川春野采纳,获得10
9秒前
星星发布了新的文献求助10
11秒前
12秒前
赘婿应助十九岁的时差采纳,获得10
12秒前
怠惰vs勤劳完成签到,获得积分10
13秒前
夏天应助青山采纳,获得100
14秒前
15秒前
乖猫要努力应助潇湘雪月采纳,获得10
16秒前
wdy111举报风之星求助涉嫌违规
16秒前
古月完成签到,获得积分10
17秒前
17秒前
18秒前
吴所谓发布了新的文献求助50
21秒前
英吉利25发布了新的文献求助10
22秒前
23秒前
酷波er应助南冥采纳,获得10
23秒前
李沐唅完成签到 ,获得积分10
27秒前
lv完成签到,获得积分10
27秒前
周婷完成签到 ,获得积分10
28秒前
shy完成签到,获得积分10
28秒前
30秒前
犹豫的忆枫完成签到,获得积分10
30秒前
31秒前
夕沫发布了新的文献求助50
31秒前
勤奋大地发布了新的文献求助10
32秒前
乖猫要努力应助潇湘雪月采纳,获得10
32秒前
咚咚咚发布了新的文献求助30
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174