已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时不言完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
5秒前
iiuu完成签到,获得积分10
6秒前
Hello应助王瑾言采纳,获得10
6秒前
7秒前
东篱完成签到 ,获得积分10
7秒前
8秒前
依沐完成签到 ,获得积分10
9秒前
10秒前
iiuu发布了新的文献求助10
11秒前
沅沅发布了新的文献求助10
12秒前
13秒前
科研通AI6应助Bressanone采纳,获得10
17秒前
王瑾言发布了新的文献求助10
18秒前
皮皮完成签到 ,获得积分10
18秒前
21秒前
今后应助自信的钢笔采纳,获得10
24秒前
阔达凝天完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
f1ame发布了新的文献求助10
32秒前
清爽的凌晴完成签到 ,获得积分10
35秒前
amengptsd完成签到,获得积分10
35秒前
科研通AI6应助gtgyh采纳,获得10
35秒前
找文献完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522443
求助须知:如何正确求助?哪些是违规求助? 4613434
关于积分的说明 14538832
捐赠科研通 4551149
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446425