Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贺丞完成签到,获得积分10
2秒前
英俊的铭应助houchengru采纳,获得10
4秒前
奕羊发布了新的文献求助10
4秒前
小猫宝完成签到 ,获得积分10
5秒前
科研通AI2S应助baiqi采纳,获得10
5秒前
fqh发布了新的文献求助10
5秒前
6秒前
超级驼鹿完成签到,获得积分10
7秒前
Elliott关注了科研通微信公众号
8秒前
大大大大管子完成签到 ,获得积分10
10秒前
李健的小迷弟应助zhikaiyici采纳,获得20
11秒前
fqh完成签到,获得积分20
11秒前
夏夏夏完成签到,获得积分10
12秒前
wj发布了新的文献求助10
13秒前
传奇3应助合适依秋采纳,获得10
13秒前
13秒前
缪尹盛完成签到,获得积分10
14秒前
白竹完成签到 ,获得积分10
16秒前
17秒前
MOS发布了新的文献求助150
17秒前
18-Crown-6完成签到 ,获得积分10
19秒前
马大翔应助开开SWAG采纳,获得10
21秒前
21秒前
顺顺欣发布了新的文献求助30
22秒前
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
genomed应助科研通管家采纳,获得20
23秒前
大个应助科研通管家采纳,获得10
23秒前
23秒前
houchengru发布了新的文献求助10
24秒前
打屁飞完成签到,获得积分10
24秒前
牛马人生发布了新的文献求助10
26秒前
quan完成签到,获得积分10
27秒前
lxj发布了新的文献求助10
28秒前
纯情的砖家完成签到,获得积分10
28秒前
彭于晏应助ssk采纳,获得10
32秒前
liumu完成签到 ,获得积分10
33秒前
田様应助李昕123采纳,获得10
34秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122853
求助须知:如何正确求助?哪些是违规求助? 2773205
关于积分的说明 7716973
捐赠科研通 2428741
什么是DOI,文献DOI怎么找? 1289978
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188