亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助殷琛采纳,获得10
4秒前
奥利奥完成签到 ,获得积分10
5秒前
srx完成签到 ,获得积分10
6秒前
禅依完成签到,获得积分10
7秒前
FanKun发布了新的文献求助10
7秒前
虾球发布了新的文献求助10
9秒前
11秒前
赘婿应助禅依采纳,获得10
11秒前
我不到啊完成签到 ,获得积分10
12秒前
彭于晏应助VERITAS采纳,获得10
14秒前
tomato发布了新的文献求助10
18秒前
19秒前
inRe发布了新的文献求助10
20秒前
22秒前
殷琛发布了新的文献求助10
24秒前
zz发布了新的文献求助10
28秒前
31秒前
32秒前
传奇3应助殷琛采纳,获得10
32秒前
33秒前
秦小狸完成签到 ,获得积分10
34秒前
VERITAS发布了新的文献求助10
36秒前
土豪的摩托完成签到 ,获得积分10
36秒前
38秒前
yezio完成签到 ,获得积分10
39秒前
怕黑鲂完成签到 ,获得积分10
41秒前
42秒前
体贴花卷发布了新的文献求助10
42秒前
kaka完成签到 ,获得积分10
45秒前
50秒前
Liu完成签到 ,获得积分10
51秒前
55秒前
打打应助LLGOD采纳,获得10
56秒前
英姑应助体贴花卷采纳,获得10
59秒前
殷琛发布了新的文献求助10
1分钟前
1分钟前
LLGOD发布了新的文献求助10
1分钟前
zz完成签到,获得积分10
1分钟前
Leslie完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936