亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
LucyMartinez发布了新的文献求助10
5秒前
wanci应助杨杨采纳,获得10
10秒前
15秒前
科研通AI6.1应助轻松戎采纳,获得10
20秒前
22秒前
26秒前
33秒前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
宝贝丫头完成签到 ,获得积分10
1分钟前
1分钟前
meeteryu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
2分钟前
共享精神应助LucyMartinez采纳,获得10
2分钟前
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.1应助utopia采纳,获得10
2分钟前
2分钟前
玩命的无施完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
3分钟前
lx完成签到 ,获得积分10
3分钟前
动听隶发布了新的文献求助10
3分钟前
3分钟前
utopia发布了新的文献求助10
3分钟前
bkagyin应助花椰菜采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
轻松戎发布了新的文献求助10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746626
求助须知:如何正确求助?哪些是违规求助? 5436890
关于积分的说明 15355697
捐赠科研通 4886684
什么是DOI,文献DOI怎么找? 2627335
邀请新用户注册赠送积分活动 1575819
关于科研通互助平台的介绍 1532571