亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain adaptation and transfer learning for failure detection and failure-cause identification in optical networks across different lightpaths [Invited]

计算机科学 试验台 域适应 利用 鉴定(生物学) 领域(数学分析) 学习迁移 适应(眼睛) 人工智能 软件部署 机器学习 数据挖掘 计算机网络 计算机安全 光学 物理 操作系统 数学分析 分类器(UML) 生物 植物 数学
作者
Francesco Musumeci,Virajit Garbhapu Venkata,Yusuke Hirota,Yoshinari Awaji,Sugang Xu,Masaki Shiraiwa,Biswanath Mukherjee,Massimo Tornatore
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (2): A91-A91 被引量:6
标识
DOI:10.1364/jocn.438269
摘要

Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄青青完成签到,获得积分10
15秒前
30秒前
Ava应助sy采纳,获得10
31秒前
11111发布了新的文献求助10
33秒前
37秒前
39秒前
42秒前
43秒前
sy发布了新的文献求助10
48秒前
49秒前
52秒前
搜集达人应助科研通管家采纳,获得10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
超级梦寒发布了新的文献求助10
53秒前
ffff完成签到 ,获得积分10
56秒前
rengar完成签到,获得积分10
57秒前
zhao123123完成签到,获得积分10
1分钟前
1分钟前
1分钟前
11111完成签到 ,获得积分10
1分钟前
qtmxxx完成签到,获得积分10
1分钟前
1分钟前
超级梦寒完成签到,获得积分10
1分钟前
Yantuobio完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小二郎应助zkexuan采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得50
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
zkexuan发布了新的文献求助10
2分钟前
笨笨的怜雪完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zkexuan完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671164
求助须知:如何正确求助?哪些是违规求助? 4911080
关于积分的说明 15134143
捐赠科研通 4829913
什么是DOI,文献DOI怎么找? 2586540
邀请新用户注册赠送积分活动 1540184
关于科研通互助平台的介绍 1498370