Perceptual Quality Assessment of Low-light Image Enhancement

图像质量 亮度 计算机科学 人工智能 计算机视觉 图像增强 质量(理念) 噪音(视频) 图像(数学) 物理 量子力学
作者
Guangtao Zhai,SunWei,Xiongkuo Min,ZhouJiantao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (4): 1-24 被引量:33
标识
DOI:10.1145/3457905
摘要

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮碧玉完成签到,获得积分10
1秒前
酷波er应助33采纳,获得10
2秒前
wst发布了新的文献求助10
2秒前
hulian发布了新的文献求助10
3秒前
3秒前
王珏完成签到,获得积分10
3秒前
侯总应助哭泣静丹采纳,获得10
5秒前
王侯将相完成签到,获得积分10
6秒前
6秒前
木头完成签到,获得积分10
6秒前
hjy完成签到 ,获得积分10
7秒前
8秒前
吃茶去发布了新的文献求助10
8秒前
9秒前
9秒前
三叁发布了新的文献求助10
10秒前
圆锥香蕉应助牛了个牛采纳,获得20
10秒前
11秒前
12秒前
蓝蓝完成签到,获得积分10
12秒前
秋秋发布了新的文献求助10
15秒前
33发布了新的文献求助10
17秒前
领导范儿应助wst采纳,获得10
17秒前
18秒前
18秒前
wangwei完成签到,获得积分10
22秒前
水泥发布了新的文献求助10
22秒前
Liaee完成签到,获得积分10
23秒前
叶上初阳关注了科研通微信公众号
23秒前
慕青应助酒温书生采纳,获得10
23秒前
liao发布了新的文献求助10
23秒前
25秒前
26秒前
小小发布了新的文献求助10
26秒前
爆米花应助Liaee采纳,获得30
28秒前
小晴天完成签到,获得积分10
28秒前
Plusonezzz发布了新的文献求助10
28秒前
wwwjjjy关注了科研通微信公众号
29秒前
Akim应助淡然的大碗采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527