Perceptual Quality Assessment of Low-light Image Enhancement

图像质量 亮度 计算机科学 人工智能 计算机视觉 图像增强 质量(理念) 噪音(视频) 图像(数学) 物理 量子力学
作者
Guangtao Zhai,SunWei,Xiongkuo Min,ZhouJiantao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (4): 1-24 被引量:33
标识
DOI:10.1145/3457905
摘要

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘一完成签到 ,获得积分10
6秒前
六个核桃完成签到,获得积分10
7秒前
zgsn完成签到,获得积分10
7秒前
8秒前
章鱼完成签到,获得积分10
9秒前
敖江风云完成签到,获得积分10
13秒前
啊凡完成签到 ,获得积分10
13秒前
耍酷寻双完成签到 ,获得积分10
18秒前
Jeffrey完成签到,获得积分10
20秒前
smm完成签到 ,获得积分10
23秒前
嘿哈完成签到,获得积分10
26秒前
怎么睡不醒完成签到 ,获得积分10
27秒前
Johnson完成签到 ,获得积分10
29秒前
销户完成签到 ,获得积分10
31秒前
33秒前
细心的向日葵完成签到,获得积分10
36秒前
阿饼完成签到 ,获得积分10
44秒前
hyf完成签到 ,获得积分10
45秒前
研友_Ze2wB8完成签到,获得积分10
46秒前
iuhgnor完成签到,获得积分10
47秒前
xcwy完成签到,获得积分10
47秒前
king完成签到,获得积分10
48秒前
drz完成签到 ,获得积分10
50秒前
xiying完成签到 ,获得积分10
52秒前
健壮的芷容完成签到,获得积分10
54秒前
华仔应助研友_Ze2wB8采纳,获得10
54秒前
迷人的灵萱完成签到 ,获得积分10
56秒前
1分钟前
nianshu完成签到 ,获得积分10
1分钟前
Slemon完成签到,获得积分10
1分钟前
xiaofenzi完成签到,获得积分10
1分钟前
4865发布了新的文献求助10
1分钟前
1分钟前
1分钟前
swy212完成签到,获得积分10
1分钟前
北海完成签到,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
caohuijun发布了新的文献求助10
1分钟前
盼盼完成签到,获得积分10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736728
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020304
捐赠科研通 2997406
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656