清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Perceptual Quality Assessment of Low-light Image Enhancement

图像质量 亮度 计算机科学 人工智能 计算机视觉 图像增强 质量(理念) 噪音(视频) 图像(数学) 物理 量子力学
作者
Guangtao Zhai,SunWei,Xiongkuo Min,ZhouJiantao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (4): 1-24 被引量:33
标识
DOI:10.1145/3457905
摘要

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juan完成签到 ,获得积分10
11秒前
谢薇是猪完成签到,获得积分10
53秒前
清脆的飞丹完成签到,获得积分10
55秒前
woxinyouyou完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
开心苠发布了新的文献求助10
1分钟前
2分钟前
拉长的秋白完成签到 ,获得积分10
2分钟前
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
2分钟前
从容的雪碧完成签到,获得积分10
2分钟前
2分钟前
无悔完成签到 ,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Hjz完成签到,获得积分20
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
微笑高山完成签到 ,获得积分10
5分钟前
雪山飞龙完成签到,获得积分10
6分钟前
里昂义务完成签到,获得积分10
6分钟前
里昂义务发布了新的文献求助10
6分钟前
光合作用完成签到,获得积分10
6分钟前
fanssw完成签到 ,获得积分10
7分钟前
7分钟前
liuzhigang完成签到 ,获得积分10
7分钟前
JrPaleo101完成签到,获得积分10
7分钟前
Hiram完成签到,获得积分10
8分钟前
8分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
muriel完成签到,获得积分10
9分钟前
9分钟前
10分钟前
cadcae完成签到,获得积分20
10分钟前
林文隆完成签到,获得积分10
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229