材料科学
钙钛矿(结构)
复合数
量子点
能量转换效率
光伏系统
平面的
光电子学
图层(电子)
纳米技术
化学工程
复合材料
计算机科学
电气工程
计算机图形学(图像)
工程类
作者
Jing Liu,Qingshun Dong,Minhuan Wang,Hongru Ma,Mingzhu Pei,Jiming Bian,Yantao Shi
标识
DOI:10.1021/acsami.1c18344
摘要
In perovskite solar cells (PSCs), the hole-transport layer (HTL) plays an essential role in effective charge transport and extraction from the photoexcited perovskite, thus being significant for overall power conversion efficiency (PCE) and operational stability. So far, spiro-MeOTAD has been the most widely used HTL despite its inherent drawbacks, such as highly hygroscopic nature, poor conductivity, and mismatched energy-level alignment with the perovskite active layer. Here, a spiro-MeOTAD-based composite HTL modified by microwave method-synthesized carbon quantum dots (CQDs) was proposed and demonstrated as a promising HTL candidate for high-performance PSCs. The results demonstrated that the CQDs/spiro-MeOTAD composite HTL possesses several appealing characteristics for PSC applications, such as suitable energy levels for hole extraction, passivated interfacial trap states, and reduced recombination losses. Consequently, as compared to the control one using an unmodified spiro-MeOTAD HTL, (FAPbI3)0.95(MAPbBr3)0.05-based planar PSCs with composite HTL exhibit notably enhanced PCE and operational stability. Remarkably, an encouraging PCE of 20.41% was achieved for the champion device, and much improved operational stability was also demonstrated under continuous AM1.5 illumination with maximum power point (MPP) tracking conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI