Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer

材料科学 钙钛矿(结构) 复合数 量子点 能量转换效率 光伏系统 平面的 光电子学 图层(电子) 纳米技术 化学工程 复合材料 计算机科学 电气工程 计算机图形学(图像) 工程类
作者
Jing Liu,Qingshun Dong,Minhuan Wang,Hongru Ma,Mingzhu Pei,Jiming Bian,Yantao Shi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56265-56272 被引量:21
标识
DOI:10.1021/acsami.1c18344
摘要

In perovskite solar cells (PSCs), the hole-transport layer (HTL) plays an essential role in effective charge transport and extraction from the photoexcited perovskite, thus being significant for overall power conversion efficiency (PCE) and operational stability. So far, spiro-MeOTAD has been the most widely used HTL despite its inherent drawbacks, such as highly hygroscopic nature, poor conductivity, and mismatched energy-level alignment with the perovskite active layer. Here, a spiro-MeOTAD-based composite HTL modified by microwave method-synthesized carbon quantum dots (CQDs) was proposed and demonstrated as a promising HTL candidate for high-performance PSCs. The results demonstrated that the CQDs/spiro-MeOTAD composite HTL possesses several appealing characteristics for PSC applications, such as suitable energy levels for hole extraction, passivated interfacial trap states, and reduced recombination losses. Consequently, as compared to the control one using an unmodified spiro-MeOTAD HTL, (FAPbI3)0.95(MAPbBr3)0.05-based planar PSCs with composite HTL exhibit notably enhanced PCE and operational stability. Remarkably, an encouraging PCE of 20.41% was achieved for the champion device, and much improved operational stability was also demonstrated under continuous AM1.5 illumination with maximum power point (MPP) tracking conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
HH完成签到,获得积分10
2秒前
2秒前
Barnett完成签到,获得积分10
2秒前
2秒前
3秒前
Bizi发布了新的文献求助20
3秒前
MY20240406发布了新的文献求助10
3秒前
翎宝完成签到 ,获得积分10
3秒前
zhuyutian发布了新的文献求助10
4秒前
科目三应助zhang-leo采纳,获得10
4秒前
4秒前
4秒前
122完成签到,获得积分20
4秒前
freebird应助科研小白采纳,获得50
4秒前
汉堡包应助llx666采纳,获得10
4秒前
项初蝶发布了新的文献求助20
5秒前
康康完成签到,获得积分10
5秒前
znn完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
Spike发布了新的文献求助30
6秒前
6秒前
科研通AI2S应助鲸鱼采纳,获得10
6秒前
龙行天下发布了新的文献求助10
7秒前
MrCoolWu发布了新的文献求助10
7秒前
田様应助mir为少采纳,获得10
7秒前
丁丁猫发布了新的文献求助10
7秒前
kk发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
Tanya47应助迪克大采纳,获得10
9秒前
一味愚完成签到,获得积分10
9秒前
万能图书馆应助夏天采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482