Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
轩儿轩完成签到 ,获得积分10
1秒前
友好的芷雪完成签到,获得积分10
1秒前
LL发布了新的文献求助10
1秒前
2秒前
YH完成签到,获得积分10
3秒前
SOBER发布了新的文献求助10
3秒前
4秒前
傲娇绿蕊发布了新的文献求助10
4秒前
顾矜应助Reborn采纳,获得10
4秒前
上官若男应助lcpppppp采纳,获得10
7秒前
核桃发布了新的文献求助10
7秒前
221发布了新的文献求助10
7秒前
失眠的冬易完成签到 ,获得积分10
7秒前
drew完成签到 ,获得积分10
8秒前
dreamode完成签到,获得积分10
8秒前
优美的梦玉完成签到,获得积分20
9秒前
星星完成签到,获得积分10
9秒前
舒心睿渊完成签到,获得积分20
9秒前
万能图书馆应助QQQ采纳,获得10
9秒前
李小强完成签到,获得积分10
9秒前
michael发布了新的文献求助10
10秒前
orixero应助xxy采纳,获得10
10秒前
隐形曼青应助康明雪采纳,获得10
10秒前
天天快乐应助球球泥惹111采纳,获得10
11秒前
ken131发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
11秒前
nature应助清浅采纳,获得10
11秒前
13秒前
英俊的铭应助清河聂氏采纳,获得10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Hello应助keyanniniz采纳,获得10
13秒前
swall5w完成签到,获得积分10
13秒前
15秒前
15秒前
魔丸学医完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956