Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wangbw完成签到,获得积分10
1秒前
Akim应助海德堡采纳,获得10
1秒前
烟花应助yuan采纳,获得10
2秒前
leo0531完成签到 ,获得积分10
3秒前
FashionBoy应助996755采纳,获得10
4秒前
5秒前
5秒前
lbl发布了新的文献求助10
5秒前
xzz发布了新的文献求助10
6秒前
jinxing发布了新的文献求助10
6秒前
博弈完成签到 ,获得积分10
7秒前
8秒前
凡千灵溪完成签到 ,获得积分10
8秒前
十五完成签到,获得积分10
9秒前
可爱的函函应助Richard采纳,获得10
10秒前
oneonlycrown完成签到,获得积分10
11秒前
感谢大家发布了新的文献求助10
11秒前
11秒前
FashionBoy应助破碎的试剂采纳,获得10
12秒前
水123发布了新的文献求助10
12秒前
13秒前
jinxing完成签到,获得积分10
13秒前
王涵秋发布了新的文献求助10
13秒前
cici完成签到 ,获得积分10
13秒前
13秒前
14秒前
liquor完成签到,获得积分10
14秒前
15秒前
完美世界应助711采纳,获得10
17秒前
克里斯蒂龙完成签到,获得积分20
17秒前
无极微光应助fireflieszy采纳,获得20
17秒前
海德堡发布了新的文献求助10
17秒前
lbl完成签到,获得积分10
18秒前
棉花糖完成签到 ,获得积分10
18秒前
19秒前
一一应助感谢大家采纳,获得10
19秒前
perchasing完成签到,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832