已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 内科学 操作系统 量子力学 教育学 心理学
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaobai发布了新的文献求助10
2秒前
chenzy完成签到,获得积分10
4秒前
5秒前
今后应助小胡萝白采纳,获得10
5秒前
9秒前
1107任务报告完成签到 ,获得积分10
15秒前
hyhyhyhy发布了新的文献求助10
15秒前
慎二完成签到 ,获得积分10
16秒前
16秒前
百地希留耶完成签到 ,获得积分10
18秒前
18秒前
研友_VZG7GZ应助热心盼波采纳,获得30
20秒前
充电宝应助xiaobai采纳,获得10
20秒前
22秒前
赘婿应助hyhyhyhy采纳,获得10
22秒前
winifred完成签到 ,获得积分10
22秒前
Apocalypse_zjz完成签到 ,获得积分10
22秒前
XL神放发布了新的文献求助30
23秒前
小胡萝白发布了新的文献求助10
23秒前
27秒前
orixero应助sun采纳,获得10
27秒前
书中魂我自不理会完成签到 ,获得积分10
28秒前
汤泽琪发布了新的文献求助10
32秒前
32秒前
李健应助孤独的墨镜采纳,获得10
33秒前
Sean完成签到,获得积分10
36秒前
优美平凡发布了新的文献求助10
36秒前
huang完成签到 ,获得积分10
40秒前
若月画萤完成签到,获得积分10
43秒前
小胡萝白完成签到,获得积分10
45秒前
buno发布了新的文献求助30
49秒前
顾矜应助外向的不尤采纳,获得10
49秒前
51秒前
53秒前
sunshinegirl发布了新的文献求助10
56秒前
56秒前
111完成签到,获得积分10
57秒前
赘婿应助lvsehx采纳,获得10
57秒前
57秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749