Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
无花果应助开朗发卡采纳,获得10
5秒前
我不是大牛完成签到,获得积分10
5秒前
5秒前
雁回发布了新的文献求助10
5秒前
7秒前
jufeng发布了新的文献求助10
8秒前
Mayday发布了新的文献求助10
8秒前
善学以致用应助鲤鱼寒荷采纳,获得10
9秒前
JAY发布了新的文献求助10
10秒前
开朗发卡发布了新的文献求助10
11秒前
秋夏山完成签到,获得积分10
12秒前
12秒前
15秒前
15秒前
15秒前
情怀应助一米阳光采纳,获得10
16秒前
Hanni完成签到 ,获得积分10
17秒前
18秒前
在水一方应助朝圣者采纳,获得10
19秒前
小鬼完成签到 ,获得积分10
19秒前
Rain1god完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
23秒前
独特的定帮完成签到 ,获得积分10
23秒前
慕青应助阿龙采纳,获得10
24秒前
24秒前
ZW发布了新的文献求助10
26秒前
27秒前
Tutu关注了科研通微信公众号
27秒前
木子耶发布了新的文献求助10
28秒前
独特的定帮关注了科研通微信公众号
28秒前
小兔子乖乖完成签到 ,获得积分10
29秒前
无情的绮彤完成签到,获得积分10
32秒前
33秒前
Jasper应助Murphy采纳,获得10
33秒前
CipherSage应助qq采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360