Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 内科学 操作系统 量子力学 教育学 心理学
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的书包完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
zty完成签到,获得积分10
4秒前
摇摇奶昔发布了新的文献求助10
6秒前
7秒前
yao chen完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
freshman3005发布了新的文献求助10
12秒前
不配.应助谨慎不二采纳,获得10
12秒前
lwh104完成签到,获得积分10
13秒前
搞怪沛白发布了新的文献求助30
14秒前
爱幻想的青柠给爱幻想的青柠的求助进行了留言
15秒前
会会会发布了新的文献求助10
16秒前
19秒前
19秒前
酷波er应助dqq采纳,获得10
22秒前
搞怪沛白完成签到,获得积分10
23秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
26秒前
会会会完成签到,获得积分10
27秒前
27秒前
完美世界应助Lazarus_x采纳,获得10
29秒前
Hou完成签到,获得积分10
29秒前
菠萝完成签到 ,获得积分10
32秒前
melody完成签到,获得积分10
36秒前
才才完成签到 ,获得积分10
40秒前
42秒前
rxyxiaoyu完成签到,获得积分10
43秒前
44秒前
不配.应助时雨采纳,获得10
45秒前
可爱的函函应助蛋壳柯采纳,获得10
45秒前
freshman3005发布了新的文献求助10
46秒前
小燕子完成签到,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825