Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助执着的弱采纳,获得10
刚刚
未命名发布了新的文献求助10
刚刚
1秒前
yhh发布了新的文献求助10
1秒前
2秒前
2秒前
twang93完成签到,获得积分10
2秒前
2秒前
2秒前
偷吃文献的老鼠完成签到,获得积分20
2秒前
fyc发布了新的文献求助10
3秒前
3秒前
3秒前
Lyd发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
8秒前
shiqi完成签到,获得积分10
8秒前
米米发布了新的文献求助10
8秒前
8秒前
铛铛发布了新的文献求助30
8秒前
栗栗发布了新的文献求助50
9秒前
圆你心安完成签到,获得积分10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
木子囡月发布了新的文献求助10
11秒前
JKfeng完成签到,获得积分10
12秒前
zrw发布了新的文献求助10
12秒前
科研通AI6.1应助Marita采纳,获得10
13秒前
13秒前
苹果惠发布了新的文献求助10
13秒前
14秒前
科目三应助负责的方盒采纳,获得30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012