亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
饱满的书萱完成签到,获得积分10
6秒前
nazhang发布了新的文献求助10
8秒前
青柠发布了新的文献求助10
10秒前
17秒前
小小斌发布了新的文献求助200
21秒前
29秒前
29秒前
科研通AI6应助殷楷霖采纳,获得10
29秒前
kangkang发布了新的文献求助10
30秒前
搜集达人应助xwc采纳,获得30
32秒前
共享精神应助xwc采纳,获得10
33秒前
科研通AI6应助xwc采纳,获得10
33秒前
完美世界应助xwc采纳,获得10
33秒前
科研通AI6应助xwc采纳,获得10
33秒前
端庄千青发布了新的文献求助10
34秒前
deansy发布了新的文献求助10
34秒前
38秒前
斯文败类应助端庄千青采纳,获得10
40秒前
量子星尘发布了新的文献求助10
42秒前
拿铁小笼包完成签到,获得积分10
42秒前
46秒前
细心的雨竹完成签到,获得积分10
47秒前
47秒前
嘻嘻完成签到,获得积分10
48秒前
青柠发布了新的文献求助10
52秒前
充电宝应助fzy采纳,获得10
53秒前
55秒前
吱吱吱吱发布了新的文献求助10
59秒前
清秀芝麻完成签到 ,获得积分10
1分钟前
小四发布了新的文献求助20
1分钟前
kangkang完成签到,获得积分10
1分钟前
Jasper应助糖拌西红柿采纳,获得10
1分钟前
mmyhn完成签到,获得积分10
1分钟前
1分钟前
苗条书桃完成签到,获得积分10
1分钟前
科研通AI6应助殷楷霖采纳,获得10
1分钟前
1717发布了新的文献求助10
1分钟前
kmy完成签到 ,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790