已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 内科学 操作系统 量子力学 教育学 心理学
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沁沁沁发布了新的文献求助10
4秒前
bluebell完成签到,获得积分10
4秒前
LELE完成签到 ,获得积分10
4秒前
Xiaoxiao应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得30
9秒前
淡水痕完成签到,获得积分10
9秒前
魔幻安南完成签到 ,获得积分10
10秒前
沉默寻凝完成签到,获得积分10
12秒前
ding完成签到 ,获得积分10
13秒前
14秒前
14秒前
寒雨完成签到,获得积分10
15秒前
结实的啤酒完成签到 ,获得积分10
15秒前
寒雨发布了新的文献求助10
17秒前
隐形曼青应助清新的静枫采纳,获得10
17秒前
LYJ完成签到,获得积分10
21秒前
希望天下0贩的0应助寒雨采纳,获得10
22秒前
李昕123完成签到 ,获得积分10
25秒前
pluvia完成签到,获得积分10
26秒前
30秒前
认真路人发布了新的文献求助10
34秒前
38秒前
Rave完成签到 ,获得积分10
42秒前
42秒前
bingbing完成签到,获得积分10
48秒前
48秒前
sdniuidifod发布了新的文献求助10
48秒前
52秒前
寒雨发布了新的文献求助10
55秒前
一只呆呆完成签到 ,获得积分10
56秒前
SGOM完成签到,获得积分10
1分钟前
米米完成签到 ,获得积分20
1分钟前
小王不会看文献完成签到,获得积分10
1分钟前
逆天大脚完成签到,获得积分10
1分钟前
wanci应助zzj1996采纳,获得30
1分钟前
AAA咸鱼批发完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzj1996发布了新的文献求助30
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671167
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778325
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735962