Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助老肖采纳,获得10
刚刚
1秒前
杨宝仪发布了新的文献求助10
1秒前
hu发布了新的文献求助10
2秒前
无限的小懒虫完成签到,获得积分10
2秒前
图图超人发布了新的文献求助10
2秒前
lucky完成签到,获得积分10
3秒前
小蓝发布了新的文献求助10
3秒前
华仔应助YNHN采纳,获得10
3秒前
4秒前
科研通AI6应助鱼y采纳,获得10
4秒前
英姑应助笨笨的鬼神采纳,获得10
4秒前
sunny完成签到,获得积分10
5秒前
5秒前
科研通AI6应助smile采纳,获得10
5秒前
科研顺利发布了新的文献求助10
5秒前
toot完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助ccone采纳,获得10
7秒前
orixero应助小章采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
乘风完成签到,获得积分10
8秒前
海棠完成签到 ,获得积分10
9秒前
10秒前
hu完成签到,获得积分10
10秒前
10秒前
小1完成签到,获得积分10
11秒前
镓氧锌钇铀应助yy采纳,获得10
11秒前
11秒前
友好的宛凝完成签到,获得积分10
11秒前
江流儿完成签到,获得积分10
11秒前
英俊的铭应助勤恳醉柳采纳,获得10
12秒前
13秒前
载荷发布了新的文献求助10
13秒前
15秒前
15秒前
阿玺发布了新的文献求助10
16秒前
打打应助酷酷小天鹅采纳,获得10
16秒前
玩命的凝天完成签到,获得积分10
16秒前
palace发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618