Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 心理学 教育学 量子力学 内科学 操作系统
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow Publications]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jing发布了新的文献求助10
1秒前
1秒前
LJX发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
flyfish完成签到,获得积分10
2秒前
bckl888完成签到,获得积分10
2秒前
2秒前
ww发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
ding应助Wanderer采纳,获得10
4秒前
锅包肉爱吃肉完成签到 ,获得积分10
4秒前
HollidayLee完成签到,获得积分10
5秒前
5秒前
默默发布了新的文献求助10
5秒前
zx完成签到,获得积分10
6秒前
王川完成签到,获得积分10
6秒前
bayes111完成签到,获得积分20
6秒前
深情安青应助霍师傅采纳,获得10
7秒前
西鱼发布了新的文献求助10
7秒前
7秒前
Owen应助羊丢丢啊丢丢采纳,获得10
7秒前
旺旺发布了新的文献求助10
8秒前
wangyaofeng发布了新的文献求助10
8秒前
高子懿发布了新的文献求助10
8秒前
Quinn发布了新的文献求助10
8秒前
8秒前
小鹿完成签到,获得积分10
9秒前
c0uVi1完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
茜茜完成签到,获得积分10
9秒前
苹果从菡完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515