亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm

基准标记 基本事实 人工智能 计算机科学 投影(关系代数) 体积热力学 跟踪(教育) 前列腺癌 计算机视觉 霍夫变换 成像体模 MATLAB语言 核医学 医学 算法 图像(数学) 癌症 物理 内科学 操作系统 量子力学 教育学 心理学
作者
Ramachandran Prabhakar,Prabhakar Ramachandran,Andrew Fielding,Margot Lehman,Christopher Noble,Ben Perrett,Daryl Ning
出处
期刊:Journal of Medical Physics [Medknow]
卷期号:46 (2): 80-80 被引量:4
标识
DOI:10.4103/jmp.jmp_117_20
摘要

Fiducial marker seeds are often used as a surrogate to identify and track the positioning of prostate volume in the treatment of prostate cancer. Tracking the movement of prostate seeds aids in minimizing the prescription dose spillage outside the target volume to reduce normal tissue complications. In this study, You Only Look Once (YOLO) v2™ (MathWorks™) convolutional neural network was employed to train ground truth datasets and develop a program in MATLAB that can visualize and detect the seeds on projection images obtained from kilovoltage (kV) X-ray volume imaging (XVI) panel (Elekta™).As a proof of concept, a wax phantom containing three gold marker seeds was imaged, and kV XVI seed images were labeled and used as ground truth to train the model. The projection images were corrected for any panel shift using flex map data. Upon successful testing, labeled marker seeds and projection images of three patients were used to train a model to detect fiducial marker seeds. A software program was developed to display the projection images in real-time and predict the seeds using YOLO v2 and determine the centers of the marker seeds on each image.The fiducial marker seeds were successfully detected in 98% of images from all gantry angles; the variation in the position of the seed center was within ± 1 mm. The percentage difference between the ground truth and the detected seeds was within 3%.Our study shows that deep learning can be used to detect fiducial marker seeds in kV images in real time. This is an ongoing study, and work is underway to extend it to other sites for tracking moving structures with minimal effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
Jasper应助wuran采纳,获得10
30秒前
努力努力再努力完成签到,获得积分10
35秒前
35秒前
39秒前
wuran发布了新的文献求助10
43秒前
48秒前
April_5发布了新的文献求助10
53秒前
馆长举报自由依秋求助涉嫌违规
1分钟前
April_5完成签到,获得积分20
1分钟前
wuran发布了新的文献求助10
1分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
xingsixs发布了新的文献求助30
1分钟前
wuran发布了新的文献求助10
1分钟前
馆长举报大漠谣求助涉嫌违规
2分钟前
2分钟前
2分钟前
馆长举报Zinc求助涉嫌违规
2分钟前
bbsheng完成签到,获得积分10
2分钟前
2分钟前
学术小白完成签到,获得积分0
2分钟前
2分钟前
馆长举报waoller1求助涉嫌违规
2分钟前
可爱的函函应助cctoday采纳,获得10
3分钟前
Wyoou发布了新的文献求助10
3分钟前
3分钟前
XiaoLiu应助Virtual采纳,获得50
3分钟前
GIA完成签到,获得积分10
3分钟前
852应助wuran采纳,获得10
3分钟前
XiaoLiu应助Virtual采纳,获得50
3分钟前
3分钟前
3分钟前
3分钟前
wuran发布了新的文献求助10
4分钟前
cctoday发布了新的文献求助10
4分钟前
馆长应助wuran采纳,获得30
4分钟前
cctoday完成签到,获得积分10
4分钟前
4分钟前
粥粥完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568572
求助须知:如何正确求助?哪些是违规求助? 3991139
关于积分的说明 12355423
捐赠科研通 3663104
什么是DOI,文献DOI怎么找? 2018685
邀请新用户注册赠送积分活动 1053099
科研通“疑难数据库(出版商)”最低求助积分说明 940689