Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems

铅(地质) 人工智能 计算机科学 残差神经网络 模式识别(心理学) 深度学习 提前期 试验数据 数据挖掘 机器学习 工程类 运营管理 地貌学 地质学 程序设计语言
作者
Junsang Park,Junho An,Jinkook Kim,Sunghoon Jung,Yeongjoon Gil,Yoojin Jang,Kwanglo Lee,Il‐Young Oh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:214: 106521-106521 被引量:35
标识
DOI:10.1016/j.cmpb.2021.106521
摘要

Most deep-learning-related methodologies for electrocardiogram (ECG) classification are focused on finding an optimal deep-learning architecture to improve classification performance. However, in this study, we proposed a methodology for fusion of various single-lead ECG data as training data in the single-lead ECG classification problem.We used a squeeze-and-excitation residual network (SE-ResNet) with 152 layers as the baseline model. We compared the performance of a 152-layer SE-ResNet trained on ECG signals from various leads of a standard 12-lead ECG system to that of a 152-layer SE-ResNet trained on only single-lead ECG data with the same lead information as the test set. The experiments were performed using five different types of rhythm-type single-lead ECG data obtained from Konkuk University Hospital in South Korea.Experiment results based on the combination from the relationship experiments of the leads showed that lead -aVR or II revealed the best classification performance. In case of -aVR, this model achieved a high F1 score for normal (98.7%), AF (98.2%), APC (95.1%), and VPC (97.4%), indicating its potential for practical use in the medical field.We concluded that the 152-layer SE-ResNet trained by fusion of single-lead ECGs had better classification performance than the 152-layer SE-ResNet trained on only single-lead ECG data, regardless of the single-lead ECG signal type. We also found that the best performance directions for single-lead ECG classification are Lead -aVR and II.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火锅完成签到,获得积分10
刚刚
zyc关注了科研通微信公众号
刚刚
华华发布了新的文献求助10
1秒前
无花果应助姚琛采纳,获得10
1秒前
旋转的龙发布了新的文献求助10
1秒前
2秒前
平常的g完成签到 ,获得积分10
2秒前
ZS发布了新的文献求助10
2秒前
大模型应助小怪兽采纳,获得10
2秒前
1531811完成签到,获得积分10
2秒前
常琳琳给常琳琳的求助进行了留言
2秒前
香蕉觅云应助给大佬递茶采纳,获得10
4秒前
4秒前
NexusExplorer应助彼岸花采纳,获得10
4秒前
5秒前
陈fw发布了新的文献求助10
6秒前
传奇3应助yhuang采纳,获得10
7秒前
左丘忻完成签到,获得积分10
7秒前
7秒前
落尘完成签到,获得积分10
8秒前
9秒前
9秒前
hdjienb完成签到,获得积分10
9秒前
hhh完成签到,获得积分10
10秒前
bairimao发布了新的文献求助10
10秒前
bkagyin应助周国超采纳,获得10
12秒前
kong应助无奈冥采纳,获得10
12秒前
tianya发布了新的文献求助10
12秒前
13秒前
zyc发布了新的文献求助10
14秒前
14秒前
15秒前
充电宝应助niuwenyu采纳,获得10
15秒前
带善人发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
希望天下0贩的0应助_Charmo采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207