热重分析
Zeta电位
材料科学
化学工程
热稳定性
钻井液
过滤(数学)
傅里叶变换红外光谱
粒径
粒度分布
纳米颗粒
粒子(生态学)
滤饼过滤器
复合材料
化学
色谱法
纳米技术
钻探
地质学
工程类
海洋学
冶金
统计
数学
作者
Fei Liu,Hailei Yao,Qingxue Liu,Xuewu Wang,Xiaodong Dai,Mengyue Zhou,Ye Wang,Chengxiang Zhang,Daoxu Wang,Yongquan Deng
标识
DOI:10.1016/j.colsurfa.2021.127168
摘要
Wellbore instability and reservoir damage caused by filtrate of water-based drilling fluids (WDFs) invading the formation are extremely problematic issues in the process of oil excavation. Herein, we reported a novel polymer with core-shell structure based on modified silica nanoparticles as a filtrate reducer (NS-DA) in WDFs. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) results revealed that the target product NS-DA had been gained. The results of thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of NS-DA occurred after 293 °C. Meanwhile, NS-DA exhibited the most outstanding filtration loss reduction ability compared to three commercially filtrate reducer (Driscal D. PAC-Lv and CMC) in the filtration loss test prescribed by the American Petroleum Institute. Specifically, the filtration loss of Driscal D/WDFs, PAC-Lv/WDFs and CMC/WDFs were 16.2 mL, 18.4 mL and 19.8 mL after hot rolling at 180 °C for 16 h, respectively, while the filtration loss of NS-DA/WDFs was only 5.6 mL. The mechanism of NS-DA in controlling filtration loss was investigated by Zeta potential measurements, particle size distribution analysis and mud cake analysis. The results showed that NS-DA molecular chains were firmly adsorbed on the surface of clay particles through hydrogen and ionic bonds, which reduced the zeta potential and the average particle size of clay particles, diminished the mud cake permeability, and thus enhanced the stability of the WDFs colloidal system. This work indicates that NS-DA has great potential for future oil excavation.
科研通智能强力驱动
Strongly Powered by AbleSci AI