化学
光化学
多金属氧酸盐
制氢
太阳能燃料
钌
人工光合作用
氢气储存
解耦(概率)
氢
纳米技术
催化作用
光催化
有机化学
材料科学
控制工程
工程类
作者
Sebastian Amthor,Sebastian Knoll,Magdalena Heiland,Linda Zedler,Chunyu Li,Djawed Nauroozi,Willi Tobaschus,Alexander K. Mengele,Montaha Anjass,Ulrich S. Schubert,Benjamin Dietzek‐Ivanšić,Sven Rau,Carsten Streb
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2022-01-27
卷期号:14 (3): 321-327
被引量:95
标识
DOI:10.1038/s41557-021-00850-8
摘要
Decoupling the production of solar hydrogen from the diurnal cycle is a key challenge in solar energy conversion, the success of which could lead to sustainable energy schemes capable of delivering H2 independent of the time of day. Here, we report a fully integrated photochemical molecular dyad composed of a ruthenium-complex photosensitizer covalently linked to a Dawson polyoxometalate that acts as an electron-storage site and hydrogen-evolving catalyst. Visible-light irradiation of the system in solution leads to charge separation and electron storage on the polyoxometalate, effectively resulting in a liquid fuel. In contrast to related, earlier dyads, this system enables the harvesting, storage and delayed release of solar energy. On-demand hydrogen release is possible by adding a proton donor to the dyad solution. The system is a minimal molecular model for artificial photosynthesis and enables the spatial and temporal separation of light absorption, fuel storage and hydrogen release.
科研通智能强力驱动
Strongly Powered by AbleSci AI