Green, sustainable, and room-temperature synthesis of silver nanowires using tannic acid – Kinetic and parametric study

单宁酸 材料科学 透射电子显微镜 纳米线 扫描电子显微镜 化学工程 纳米技术 光谱学 光催化 光强度 纳米结构 化学 光学 催化作用 复合材料 有机化学 工程类 物理 量子力学
作者
Sina Kaabipour,Shohreh Hemmati
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier BV]
卷期号:641: 128495-128495 被引量:14
标识
DOI:10.1016/j.colsurfa.2022.128495
摘要

This study reports the green, room-temperature and light-assisted synthesis of silver nanowires (AgNWs) using tannic acid as both the reducing and capping/stabilizing agents. Although the green synthesis of silver nanowires can offer several advantages in terms of simplicity, environmental friendliness, and cost-effectiveness, most of these processes suffer from substantial variability due to uncertain experimental factors, which makes their reproduction challenging. One of the factors that is often neglected in such processes is light, which can significantly affect the synthesis process and as a result alter the morphology of the final nanostructures. In this study, three different light conditions including dark (0 LUX), partially illuminated (90 LUX), and fully illuminated (676 LUX) were considered for the synthesis of silver nanostructures, and the change in morphology with respect to light intensity was evaluated. The results suggested that light intensity can significantly change the reduction capability of tannic acid, and that a relatively weak illumination condition is necessary for the growth of AgNWs when tannic acid is used as the reducing agent. The AgNWs were found to have an average diameter and length of 24.4 ± 6.6 nm and 11.4 ± 3.2 µm, respectively in partially illuminated condition. The synthesized silver nanostructures and nanowires were characterized using scanning electron microcopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV–visible spectroscopy (UV–vis). In addition, the consumption of Ag+ ions for all illumination conditions was measured to observe how the reduction rate is affected by illumination. The results suggested that the reduction rate has a direct relation with respect to light intensity. The Ag+ concentration with respect to time was analyzed by the pseudo-first order kinetics model, a modified pseudo-first order model previously introduced by Finke and Watzky, and a new proposed empirical model. Furthermore, the effect of other factors such as the tannic acid/silver nitrate molar ratio, pH, and stirring rate were investigated to observe how the morphology of silver nanostructures and the yield of AgNWs change. Considering tannic acid, a green and abundantly available compound, as the only reducing and capping/stabilizing agent, while using merely light as a reduction assisting input, this procedure can serve as a useful approach towards the scalable, inexpensive, and sustainable synthesis of AgNWs with relatively high yield and aspect ratio, which has not been reported before to the best of the authors’ knowledge. The green and sustainably synthesized AgNWs are promising candidates for manufacturing a new generation of transparent conductive films (TCFs) known as eco-friendly transparent conductive films (Eco-TCFs) for electronic applications. This study will shed light to the industrially-relevant sustainable metal nanostructures synthesis and fundamentally contributes to the advancement of the green nanotechnology field. These fundamental advances will eventually seek to solve two critical problems, namely that of capital investment and environmental footprints of metal nanostructures synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈静静发布了新的文献求助10
2秒前
liuxinyu发布了新的文献求助10
2秒前
LHL发布了新的文献求助10
2秒前
3秒前
淡定元珊完成签到,获得积分10
3秒前
4秒前
今后应助雷霆爆爆凯采纳,获得10
4秒前
小蘑菇应助山苍梓采纳,获得10
4秒前
6秒前
qiu完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Owen应助多摩川的烟花少年采纳,获得10
7秒前
12关闭了12文献求助
8秒前
qiucheng1227发布了新的文献求助10
8秒前
科研通AI6应助yayisheng采纳,获得10
8秒前
10秒前
10秒前
李牧发布了新的文献求助10
11秒前
11秒前
64658应助沧海一声笑采纳,获得10
12秒前
12秒前
浮游应助嘟噜采纳,获得10
12秒前
兴奋的若菱完成签到 ,获得积分10
12秒前
13秒前
dxm发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
15秒前
15秒前
16秒前
林鑫璐发布了新的文献求助10
17秒前
17秒前
英吉利25发布了新的文献求助20
18秒前
叶郅晟发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355