已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gaussian kernel probability-driven slime mould algorithm with new movement mechanism for multi-level image segmentation

分割 计算机科学 图像分割 人工智能 核(代数) 趋同(经济学) 阈值 群体智能 高斯过程 过程(计算) 模糊逻辑 熵(时间箭头) 算法 高斯分布 机器学习 数学优化 图像(数学) 粒子群优化 数学 物理 组合数学 量子力学 经济 经济增长 操作系统
作者
Lili Ren,Ali Asghar Heidari,Zhennao Cai,Qike Shao,Guoxi Liang,Huiling Chen,Zhifang Pan
出处
期刊:Measurement [Elsevier]
卷期号:192: 110884-110884 被引量:52
标识
DOI:10.1016/j.measurement.2022.110884
摘要

• An improved slime mould algorithm (MGSMA) is proposed for image segmentation. • An effective multi-level image segmentation based on MGSMA is developed. • The performance of MGSMA is verified by comparing with some well-known peers. • MGSMA effectively optimizes segmentation process and improves segmentation results. First, this study develops an enhanced slime mould algorithm (MGSMA). The main idea is to combine the new movement strategy and Gaussian kernel probability strategy to improve the optimization performance of the original slime mould algorithm. These two tactics increase MGSMA's capacity to avoid being stuck in a local optimum and reduce the probability of delaying the convergence process. Second, by integrating non-local mean, 2D Kapur's entropy, and other relevant methodologies, a novel multi-level image segmentation (MLIS) model is developed based on the suggested MGSMA. To showcase MGSMA's performance, specific comparative tests based on IEEE CEC2014 are carried out, clearly showing that MGSMA is a swarm intelligence approach capable of jumping out of the local optimum and the convergence process does not willingly interrupt. To demonstrate that the MGSMA-based MLIS approach can provide high-quality segmentation results, it is compared to eight other comparable methods at both high and low thresholding levels, with some relevant experimental findings to back up its claims. As a consequence, there is no question that MGSMA is a high-performance swarm intelligence optimization approach and that the MGSMA-based MLIS method can provide high-quality segmentation results. The source codes of the SMA algorithm and latest updates are publicly available at https://aliasgharheidari.com/SMA.html .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bobo发布了新的文献求助10
1秒前
Kang完成签到,获得积分10
1秒前
小莫发布了新的文献求助10
3秒前
77完成签到 ,获得积分10
3秒前
YuCloudy关注了科研通微信公众号
7秒前
李蕾完成签到 ,获得积分20
9秒前
含糊的寒梅完成签到 ,获得积分10
10秒前
tothemoon完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
舒服的山晴完成签到 ,获得积分10
15秒前
MaFY完成签到,获得积分10
16秒前
栗2发布了新的文献求助10
16秒前
柔弱藏今发布了新的文献求助10
18秒前
18秒前
18秒前
21秒前
23秒前
瑞秋发布了新的文献求助10
23秒前
23秒前
一块地发布了新的文献求助20
25秒前
星辰大海应助tyy采纳,获得10
25秒前
唐亚婷完成签到,获得积分10
27秒前
28秒前
科研通AI5应助瑞秋采纳,获得10
28秒前
misshe发布了新的文献求助10
29秒前
kk应助复杂云朵采纳,获得100
30秒前
Owen应助xzj7789210采纳,获得10
31秒前
nano发布了新的文献求助10
32秒前
科研通AI5应助fenglihuang123采纳,获得80
33秒前
33秒前
ShengjuChen完成签到 ,获得积分10
34秒前
35秒前
英姑应助PENGDOCTOR采纳,获得10
36秒前
畅快问蕊发布了新的文献求助10
37秒前
37秒前
星辰大海应助nano采纳,获得10
37秒前
栗2发布了新的文献求助10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555423
求助须知:如何正确求助?哪些是违规求助? 3131069
关于积分的说明 9389939
捐赠科研通 2830532
什么是DOI,文献DOI怎么找? 1556087
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750