2430% Superplastic strain in a eutectic Au-Sn alloy with micrometer-sized grains maintained by spinodal-like decomposition

材料科学 超塑性 旋节分解 共晶体系 等轴晶 晶界滑移 微晶 延展性(地球科学) 冶金 合金 旋节 变形(气象学) 晶界 微观结构 复合材料 结晶学 相(物质) 蠕动 有机化学 化学
作者
Jian Peng,R.-C. Wang,Mei-Xiong Zhu,Zhiming Li,H.-S. Liu,A.K. Mukherjee,Tao Hu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:228: 117766-117766 被引量:16
标识
DOI:10.1016/j.actamat.2022.117766
摘要

Polycrystalline metals with fine grains are highly possible to possess superplasticity via grain boundaries sliding (GBS). However, the mechanism of stabilizing the fine grains and releasing grain boundary strain incompatibilities to maintain GBS has puzzled the researchers for several decades. Here, a classic example is represented by the Au-Sn eutectic (ζ-Au 5 Sn + δ-AuSn) alloy with micrometer-sized equiaxed grains, which achieved 2430% tensile strain at 473 K. Characterization at nanoscale reveals, unexpectedly, the universal occurrence of spinodal-like decomposition in one of the eutectic phases (δ-AuSn phase) in the Au-Sn alloy. The occurrence of the spinodal-like decomposition is energetically favorable. Therefore, the system's free energy was minimized by the spinodal-like decomposition rather than grain growth. Micrometer-sized grains were thus maintained at relatively high temperatures for maintaining GBS. In addition, the stacking faults (SFs) were generated in the spinodal-like decomposed substructures during deformation. SFs coordinated the strain incompatibilities during GBS and contributed to the plastic flow during superplasticity. In the present Au-Sn alloy, the spinodal-like decomposition is the root cause to stabilize the fine grains, eventually leading to outstanding superplasticity. This study enriches our fundamental understanding of the relation between spinodal-like decomposition and mechanical performance. It also provides new insights into the design of polycrystalline metals to achieve superplasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林好人完成签到,获得积分10
1秒前
Ranrunn完成签到,获得积分10
2秒前
汤泡泡发布了新的文献求助10
3秒前
浩二发布了新的文献求助10
4秒前
4秒前
阜睿发布了新的文献求助10
5秒前
小青完成签到 ,获得积分10
6秒前
魔法师完成签到,获得积分0
8秒前
领导范儿应助小遇采纳,获得10
8秒前
Owen应助梁海萍采纳,获得10
8秒前
黎日新完成签到,获得积分10
9秒前
9秒前
S8发布了新的文献求助10
9秒前
西桐酱完成签到,获得积分10
13秒前
文静的猕猴桃完成签到,获得积分10
13秒前
14秒前
djiwisksk66发布了新的文献求助10
15秒前
SciGPT应助Shelley采纳,获得10
17秒前
科研通AI2S应助zxfaaaaa采纳,获得10
18秒前
黄黄黄应助呉冥11采纳,获得10
19秒前
Haley完成签到,获得积分10
19秒前
wyx发布了新的文献求助20
19秒前
yongyou发布了新的文献求助10
20秒前
甜甜友容发布了新的文献求助10
22秒前
23秒前
adcc102完成签到 ,获得积分10
23秒前
Ray完成签到,获得积分10
23秒前
24秒前
果果发布了新的文献求助30
28秒前
Shelley发布了新的文献求助10
29秒前
丰富烧鹅完成签到,获得积分10
29秒前
30秒前
Hello应助云出采纳,获得10
34秒前
qqqqqq应助淡淡代玉采纳,获得10
35秒前
阿维完成签到,获得积分20
36秒前
fsf完成签到,获得积分10
36秒前
汤浩宏发布了新的文献求助10
38秒前
斯文败类应助Shelley采纳,获得10
38秒前
berrycute发布了新的文献求助10
40秒前
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982