计算机科学
人工智能
合成孔径雷达
卷积神经网络
特征提取
模式识别(心理学)
散斑噪声
计算机视觉
斑点图案
上下文图像分类
图像分辨率
图像(数学)
作者
Xingyu Liu,Yan Wu,Wenkai Liang,Yice Cao,Ming Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:19: 1-5
被引量:30
标识
DOI:10.1109/lgrs.2022.3151353
摘要
High-resolution (HR) synthetic aperture radar (SAR) image classification is a challenging task for the limitation of its complex semantic scenes and coherent speckles. Convolutional neural networks (CNNs) have been proven the superior local spatial features representation capability for SAR images. However, it is hard to capture global information of images by convolutions. To solve such issues, this letter proposes an end-to-end network named global–local network structure (GLNS) for HR SAR classification. In the GLNS framework, a lightweight CNN and a compact vision transformer (ViT) are designed to learn local and global features, and two types of features are fused in quality to mine complementary information through the fusion net. Then, our research devolves the twofold loss function to reduce the interclass distance of SAR images, which brings more compactness to classification features and less interference of coherent speckles. Experimental results on real HR SAR images indicate that the proposed method has more strong feature extraction capability and noise resistance performance. This method achieves the highest classification accuracy on both datasets compared with other related approaches based on CNN.
科研通智能强力驱动
Strongly Powered by AbleSci AI