已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Trajectories of loneliness across adolescence: An empirical comparison of longitudinal clustering methods using R

孤独 心理学 聚类分析 纵向研究 非参数统计 相似性(几何) 发展心理学 潜在类模型 纵向数据 星团(航天器) 统计 计算机科学 社会心理学 人工智能 数学 数据挖掘 程序设计语言 图像(数学)
作者
Peter Verboon,Elody Hutten,Sanny Smeekens,Ellen M.M. Jongen
出处
期刊:Journal of Adolescence [Elsevier]
卷期号:94 (4): 513-524 被引量:4
标识
DOI:10.1002/jad.12042
摘要

Abstract Introduction In this study, we compare three different longitudinal clustering methods. As a case study, the comparison of the methods is conducted for the development of loneliness from middle childhood to young adulthood. The aim is to explore how two nonparametric longitudinal cluster methods compare with a model‐based latent class mixture model approach. Methods The trajectories of loneliness of 130 young people between 9 and 21 years of age, were analyzed to find a set clusters within these trajectories. The data for this study were obtained from the Nijmegen Longitudinal Study on Infant and Child Development (The Netherlands). Loneliness was measured at four waves at the age of 9, 13, 16, and 21 years. The nonparametric methods are in the R‐packages kml and traj, and the model‐based in the lcmm package. Results All methods indicated that the optimal number of clusters to describe the heterogeneity across the trajectories was three. The kml and lcmm methods showed the most similarity in shape of all clusters and fitted the data relatively well, while the traj method yielded somewhat different shapes and didn't fit the data well. Conclusions All three methods corroborate the literature in this field by finding that the largest portion of subjects experience stable and low levels of loneliness. However, the clustering methods also reveal that there is a portion of subjects that experience changes in loneliness during adolescence. By comparing the results of nonparametric clustering methods to the latent class mixture model, this study equips researchers with an example of how to implement these models and thereby contributes to the literature on longitudinal clustering in the social sciences. Altogether the analyses show that it might be useful to investigate different algorithms to identify the most robust solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Kka完成签到 ,获得积分10
2秒前
茜茜发布了新的文献求助10
3秒前
3秒前
小橙完成签到 ,获得积分10
3秒前
爱咋咋地完成签到,获得积分10
4秒前
南桥完成签到,获得积分10
4秒前
natus发布了新的文献求助10
5秒前
王毅发布了新的文献求助10
6秒前
王旺发布了新的文献求助10
6秒前
L源完成签到,获得积分10
8秒前
睡不醒的网完成签到,获得积分10
10秒前
Jasper应助牛魔王干饭采纳,获得10
12秒前
meyokki完成签到,获得积分10
12秒前
藏锋守拙123完成签到,获得积分10
15秒前
大个应助王毅采纳,获得10
16秒前
可爱的函函应助信仰xy采纳,获得10
18秒前
王王发布了新的文献求助10
20秒前
howeVer完成签到 ,获得积分10
20秒前
21秒前
22秒前
121发布了新的文献求助10
24秒前
隐形曼青应助achilles采纳,获得10
26秒前
脑洞疼应助鱼鱼鱼鱼鱼采纳,获得10
26秒前
fufu发布了新的文献求助10
26秒前
执着的冬瓜完成签到 ,获得积分10
27秒前
艺玲发布了新的文献求助10
28秒前
star完成签到 ,获得积分10
28秒前
30秒前
32秒前
32秒前
bkagyin应助kirito1211采纳,获得10
33秒前
科研通AI6.1应助lh采纳,获得10
35秒前
石友瑶发布了新的文献求助10
37秒前
YIDAN发布了新的文献求助10
38秒前
南开小麻xzl完成签到,获得积分10
39秒前
荔枝完成签到,获得积分10
39秒前
biiii完成签到 ,获得积分10
41秒前
情怀应助kkk采纳,获得10
42秒前
Parotodus发布了新的文献求助30
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875022
求助须知:如何正确求助?哪些是违规求助? 6513079
关于积分的说明 15675876
捐赠科研通 4992834
什么是DOI,文献DOI怎么找? 2691270
邀请新用户注册赠送积分活动 1633617
关于科研通互助平台的介绍 1591240