Prediction Of Used Car Prices Using Artificial Neural Networks And Machine Learning

随机森林 人工神经网络 计算机科学 人工智能 机器学习 Lasso(编程语言) 监督学习 价值(数学) 回归 数学 统计 万维网
作者
Janke Varshitha,K Jahnavi,C. Lakshmi
标识
DOI:10.1109/iccci54379.2022.9740817
摘要

With the extensive growth in usage of cars, the newly produced cars are unable to reach the customers for various reasons like high prices, less availability, financial incapability, and so on. Hence the used car market is escalated across the globe but in India, the used car market is in a very nascent stage and mostly dominated by the unorganized sector. This gives chance for fraud while buying a used car. Hence a high precision model is required which will estimate the price of an used car with none bias towards customer or merchandiser.In this model, A Supervised learning-based Artificial Neural Network model and Random Forest Machine Learning model are developed which can learn from the car dataset provided to it. This project presents a working model for used car price prediction with a low error value. A considerable number of distinct attributes are examined for reliable and accurate predictions. The results obtained agree with theoretical predictions and have shown improvement over models which use simple linear models. An ANN (Artificial Neural Network) is built by using Keras Regression algorithm namely Keras Regressor and other Machine Learning Algorithms namely Random Forest, Lasso, Ridge, Linear regressions are built. These algorithms are tested with the car dataset. Experimental results have shown that the Random Forest model with a Mean Absolute Error value of 1.0970472 and R2 error value of 0.772584 has given the less error among all the other algorithms. The work presented here has shown profound implications for future studies of Used Cars price Prediction using Random Forest and might one day help to solve the problem of fraudswith one hundred percent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱笑晓曼发布了新的文献求助20
4秒前
老大蒂亚戈应助YJ888采纳,获得10
5秒前
JamesPei应助潇湘雪月采纳,获得10
5秒前
bbczj发布了新的文献求助10
7秒前
8秒前
9秒前
南风知我意完成签到,获得积分20
10秒前
段一帆发布了新的文献求助30
12秒前
wangqinlei完成签到 ,获得积分10
12秒前
fenghp发布了新的文献求助10
13秒前
王馨雨发布了新的文献求助10
13秒前
15秒前
CipherSage应助ccalvintan采纳,获得10
16秒前
16秒前
雪天的阳完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
烟花应助ren采纳,获得10
21秒前
讨厌科研发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
苏卿应助科研通管家采纳,获得30
23秒前
fd163c应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得30
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
24秒前
殷勤的紫槐完成签到,获得积分10
24秒前
风轻青柠发布了新的文献求助10
25秒前
25秒前
机智冬灵完成签到,获得积分10
26秒前
27秒前
为小嗳打伞完成签到 ,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174