Prediction Of Used Car Prices Using Artificial Neural Networks And Machine Learning

随机森林 人工神经网络 计算机科学 人工智能 机器学习 Lasso(编程语言) 监督学习 价值(数学) 回归 数学 统计 万维网
作者
Janke Varshitha,K Jahnavi,C. Lakshmi
标识
DOI:10.1109/iccci54379.2022.9740817
摘要

With the extensive growth in usage of cars, the newly produced cars are unable to reach the customers for various reasons like high prices, less availability, financial incapability, and so on. Hence the used car market is escalated across the globe but in India, the used car market is in a very nascent stage and mostly dominated by the unorganized sector. This gives chance for fraud while buying a used car. Hence a high precision model is required which will estimate the price of an used car with none bias towards customer or merchandiser.In this model, A Supervised learning-based Artificial Neural Network model and Random Forest Machine Learning model are developed which can learn from the car dataset provided to it. This project presents a working model for used car price prediction with a low error value. A considerable number of distinct attributes are examined for reliable and accurate predictions. The results obtained agree with theoretical predictions and have shown improvement over models which use simple linear models. An ANN (Artificial Neural Network) is built by using Keras Regression algorithm namely Keras Regressor and other Machine Learning Algorithms namely Random Forest, Lasso, Ridge, Linear regressions are built. These algorithms are tested with the car dataset. Experimental results have shown that the Random Forest model with a Mean Absolute Error value of 1.0970472 and R2 error value of 0.772584 has given the less error among all the other algorithms. The work presented here has shown profound implications for future studies of Used Cars price Prediction using Random Forest and might one day help to solve the problem of fraudswith one hundred percent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旭宝儿发布了新的文献求助10
2秒前
小旋风应助科研通管家采纳,获得10
3秒前
3秒前
itsserene应助科研通管家采纳,获得50
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
甜美的鸡翅完成签到 ,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
逸群完成签到,获得积分10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得20
4秒前
wanci应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得30
4秒前
一一应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
cc完成签到,获得积分10
6秒前
莫离完成签到,获得积分20
7秒前
8秒前
gstaihn发布了新的文献求助10
8秒前
温敏完成签到,获得积分10
9秒前
胡思乱想发布了新的文献求助10
9秒前
孟一完成签到,获得积分10
10秒前
猫野完成签到,获得积分10
11秒前
raphina完成签到,获得积分10
13秒前
14秒前
舒心谷雪完成签到 ,获得积分10
16秒前
lll完成签到,获得积分20
16秒前
18秒前
FashionBoy应助威武忆山采纳,获得10
19秒前
SciGPT应助谨慎不二采纳,获得10
20秒前
21秒前
hwq123完成签到,获得积分10
24秒前
24秒前
领导范儿应助upon采纳,获得10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079