The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study

预言 计算机科学 数据挖掘 图形 人工智能 水准点(测量) 机器学习 理论计算机科学 大地测量学 地理
作者
Tianfu Li,Zheng Zhou,Sinan Li,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108653-108653 被引量:513
标识
DOI:10.1016/j.ymssp.2021.108653
摘要

Deep learning (DL)-based methods have advanced the field of Prognostics and Health Management (PHM) in recent years, because of their powerful feature representation ability. The data in PHM are typically regular data represented in the Euclidean space. Nevertheless, there are an increasing number of applications that consider the relationships and interdependencies of data and represent the data in the form of graphs. Such kind of irregular data in non-Euclidean space pose a huge challenge to the existing DL-based methods, making some important operations (e.g., convolutions) easily applied to Euclidean space but difficult to model graph data in non-Euclidean space. Recently, graph neural networks (GNNs), as the emerging neural networks, have been utilized to model and analyze the graph data. However, there still lacks a guideline on leveraging GNNs for realizing intelligent fault diagnostics and prognostics. To fill this research gap, a practical guideline is proposed in this paper, and a novel intelligent fault diagnostics and prognostics framework based on GNN is established to illustrate how the proposed guideline works. In this framework, three types of graph construction methods are provided, and seven kinds of graph convolutional networks (GCNs) with four different graph pooling methods are investigated. To afford benchmark results for helping further study, a comprehensive evaluation of these models is performed on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Finally, four issues related to the performance of GCNs are discussed and potential research directions are provided. The code library is available at: https://github.com/HazeDT/PHMGNNBenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的一斩完成签到 ,获得积分10
刚刚
结实的德地完成签到,获得积分10
4秒前
传奇3应助小陈采纳,获得10
9秒前
13秒前
QiWei完成签到 ,获得积分10
15秒前
18秒前
zyx发布了新的文献求助10
20秒前
动物园小科畜完成签到,获得积分10
24秒前
苹果酸奶完成签到,获得积分10
26秒前
charint举报顾晟杰求助涉嫌违规
28秒前
zhanglh完成签到 ,获得积分10
32秒前
科研通AI6.2应助铮铮铁骨采纳,获得10
33秒前
飘萍过客完成签到,获得积分10
36秒前
斯文败类应助cc采纳,获得10
36秒前
TrishX完成签到 ,获得积分10
37秒前
LSY完成签到 ,获得积分10
39秒前
悲凉的便当完成签到,获得积分10
46秒前
46秒前
包容小鸽子完成签到,获得积分10
46秒前
adam完成签到,获得积分0
51秒前
cc发布了新的文献求助10
51秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
光亮笑柳完成签到,获得积分10
52秒前
酷波er应助科研通管家采纳,获得10
54秒前
在水一方应助科研通管家采纳,获得10
54秒前
yznfly应助科研通管家采纳,获得50
54秒前
Hello应助科研通管家采纳,获得10
54秒前
小二郎应助科研通管家采纳,获得10
54秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503