Explore High Thermal Conductivity Amorphous Polymers using Reinforcement Learning

热导率 材料科学 聚合物 无定形固体 强化学习 电导率 杠杆(统计) 热的 复合材料 计算机科学 机器学习 热力学 物理 化学 有机化学 物理化学
作者
Ruimin Ma,Hanfeng Zhang,Tengfei Luo
标识
DOI:10.26434/chemrxiv-2021-6jftj-v2
摘要

Developing amorphous polymers with desirable thermal conductivity has significant implications, as they are ubiquitous in applications where thermal transport is critical. Conventional Edisonian approaches are slow and without guarantee of success in material development. In this work, using a reinforcement learning scheme, we design polymers with thermal conductivity above 0.4 W/m- K. We leverage a machine learning model trained against 469 thermal conductivity data calculated from high-throughput molecular dynamics (MD) simulations as the surrogate for thermal conductivity prediction, and we use a recurrent neural network trained with around one million virtual polymer structures as a polymer generator. For all newly generated polymers with thermal conductivity > 0.400 W/m-K, we have evaluated their synthesizability by calculating the synthesis accessibility score and validated the thermal conductivity of selected polymers using MD simulations. The best thermally conductive polymer designed has a MD-calculated thermal conductivity of 0.693 W/m-K, which is also estimated to be easily synthesizable. Our demonstrated inverse design scheme based on reinforcement learning may advance polymer development with target properties, and the scheme can also be generalized to other materials development tasks for different applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yifan2024应助许小亮采纳,获得30
3秒前
3秒前
丁德成发布了新的文献求助30
3秒前
3秒前
zxt发布了新的文献求助10
6秒前
文风杰采发布了新的文献求助10
7秒前
咕噜咕噜发布了新的文献求助10
7秒前
坦率成败完成签到,获得积分10
9秒前
善学以致用应助三井库里采纳,获得10
9秒前
10秒前
11秒前
ML完成签到,获得积分10
12秒前
SciGPT应助秀儿采纳,获得10
13秒前
起点完成签到,获得积分10
14秒前
14秒前
15秒前
踏雪寻梅应助zzzkyt采纳,获得50
15秒前
Tingting发布了新的文献求助10
15秒前
16秒前
16秒前
cc关闭了cc文献求助
18秒前
支翰完成签到 ,获得积分10
20秒前
21秒前
云烟成雨应助科研通管家采纳,获得10
21秒前
21秒前
田様应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
小宋应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
21秒前
ceeray23应助科研通管家采纳,获得10
21秒前
22秒前
拉长的店员完成签到,获得积分10
22秒前
23秒前
23秒前
唠叨的不言完成签到,获得积分10
24秒前
苗条小甜瓜完成签到,获得积分10
25秒前
青岚发布了新的文献求助10
26秒前
思源应助游戏人间采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466427
求助须知:如何正确求助?哪些是违规求助? 3059206
关于积分的说明 9065452
捐赠科研通 2749686
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 696996
邀请新用户注册赠送积分活动 696746