CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images

计算机科学 挤奶 人工智能 RGB颜色模型 计算机视觉 基本事实 模式识别(心理学) 地理 考古
作者
Amey Bhole,Sandeep S. Udmale,Owen Falzon,George Azzopardi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:192: 116354-116354 被引量:10
标识
DOI:10.1016/j.eswa.2021.116354
摘要

Livestock management involves the monitoring of farm animals by tracking certain physiological and phenotypical characteristics over time. In the dairy industry, for instance, cattle are typically equipped with RFID ear tags. The corresponding data (e.g. milk properties) can then be automatically assigned to the respective cow when they enter the milking station. In order to move towards a more scalable, affordable, and welfare-friendly approach, automatic non-invasive solutions are more desirable. Thus, a non-invasive approach is proposed in this paper for the automatic identification of individual Holstein cattle from the side view while exiting a milking station. It considers input images from a thermal-RGB camera. The thermal images are used to delineate the cow from the background. Subsequently, any occluding rods from the milking station are removed and inpainted with the fast marching algorithm. Then, it extracts the RGB map of the segmented cattle along with a novel CORF3D contour map. The latter contains three contour maps extracted by the Combination of Receptive Fields (CORF) model with different strengths of push–pull inhibition. This mechanism suppresses noise in the form of grain type texture. The effectiveness of the proposed approach is demonstrated by means of experiments using a 5-fold and a leave-one day-out cross-validation on a new data set of 3694 images of 383 cows collected from the Dairy Campus in Leeuwarden (the Netherlands) over 9 days. In particular, when combining RGB and CORF3D maps by late fusion, an average accuracy of 99.64%(±0.13) was obtained for the 5-fold cross validation and 99.71%(±0.31) for the leave-one day-out experiment. The two maps were combined by first learning two ConvNet classification models, one for each type of map. The feature vectors in the two FC layers obtained from training images were then concatenated and used to learn a linear SVM classification model. In principle, the proposed approach with the novel CORF3D contour maps is suitable for various image classification applications, especially where grain type texture is a confounding variable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoyan应助vgqp采纳,获得10
刚刚
1秒前
3秒前
zxtwins完成签到,获得积分10
4秒前
gloval完成签到,获得积分10
4秒前
嘀嘀哒哒完成签到,获得积分10
6秒前
充电宝应助趙途嘵生采纳,获得10
6秒前
7秒前
冉柒完成签到,获得积分10
8秒前
子规向晚完成签到,获得积分10
9秒前
笨笨千亦完成签到 ,获得积分10
9秒前
10秒前
只喝白开水完成签到 ,获得积分10
10秒前
清秀的怀蕊完成签到 ,获得积分10
11秒前
liang完成签到 ,获得积分10
12秒前
12秒前
爽o完成签到,获得积分10
13秒前
14秒前
自然沁完成签到,获得积分10
14秒前
干净的人达完成签到 ,获得积分10
14秒前
奋斗的年纪完成签到 ,获得积分10
15秒前
顾矜应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
Yang22完成签到,获得积分10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
xdf完成签到,获得积分10
16秒前
平常的刺猬完成签到 ,获得积分10
16秒前
皮汤汤完成签到 ,获得积分10
17秒前
追寻清完成签到,获得积分10
18秒前
zhihaijun完成签到,获得积分10
18秒前
研友_89eBO8完成签到 ,获得积分10
18秒前
LKGG完成签到 ,获得积分10
19秒前
ccy应助研友_ZGDVz8采纳,获得20
19秒前
mary完成签到,获得积分10
21秒前
梁雨轩完成签到,获得积分10
21秒前
高贵的思天完成签到,获得积分10
22秒前
honlmao完成签到 ,获得积分10
22秒前
汉堡包应助无敌幸运儿采纳,获得10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229819
求助须知:如何正确求助?哪些是违规求助? 2877393
关于积分的说明 8198973
捐赠科研通 2544788
什么是DOI,文献DOI怎么找? 1374662
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851