CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images

计算机科学 挤奶 人工智能 RGB颜色模型 计算机视觉 基本事实 模式识别(心理学) 地理 考古
作者
Amey Bhole,Sandeep S. Udmale,Owen Falzon,George Azzopardi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:192: 116354-116354 被引量:10
标识
DOI:10.1016/j.eswa.2021.116354
摘要

Livestock management involves the monitoring of farm animals by tracking certain physiological and phenotypical characteristics over time. In the dairy industry, for instance, cattle are typically equipped with RFID ear tags. The corresponding data (e.g. milk properties) can then be automatically assigned to the respective cow when they enter the milking station. In order to move towards a more scalable, affordable, and welfare-friendly approach, automatic non-invasive solutions are more desirable. Thus, a non-invasive approach is proposed in this paper for the automatic identification of individual Holstein cattle from the side view while exiting a milking station. It considers input images from a thermal-RGB camera. The thermal images are used to delineate the cow from the background. Subsequently, any occluding rods from the milking station are removed and inpainted with the fast marching algorithm. Then, it extracts the RGB map of the segmented cattle along with a novel CORF3D contour map. The latter contains three contour maps extracted by the Combination of Receptive Fields (CORF) model with different strengths of push–pull inhibition. This mechanism suppresses noise in the form of grain type texture. The effectiveness of the proposed approach is demonstrated by means of experiments using a 5-fold and a leave-one day-out cross-validation on a new data set of 3694 images of 383 cows collected from the Dairy Campus in Leeuwarden (the Netherlands) over 9 days. In particular, when combining RGB and CORF3D maps by late fusion, an average accuracy of 99.64%(±0.13) was obtained for the 5-fold cross validation and 99.71%(±0.31) for the leave-one day-out experiment. The two maps were combined by first learning two ConvNet classification models, one for each type of map. The feature vectors in the two FC layers obtained from training images were then concatenated and used to learn a linear SVM classification model. In principle, the proposed approach with the novel CORF3D contour maps is suitable for various image classification applications, especially where grain type texture is a confounding variable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助liuzengzhang666采纳,获得10
刚刚
happy发布了新的文献求助10
1秒前
咔咔咔完成签到,获得积分20
1秒前
YF完成签到 ,获得积分10
2秒前
彭于晏应助Jenny采纳,获得10
3秒前
Akim应助Viola采纳,获得10
7秒前
超帅冷雪发布了新的文献求助10
7秒前
wengjc92发布了新的文献求助20
9秒前
15秒前
谨慎的万声完成签到,获得积分10
16秒前
超帅冷雪完成签到,获得积分10
18秒前
研友_5Zl9D8发布了新的文献求助10
21秒前
24秒前
heyl发布了新的文献求助30
27秒前
张雨欣完成签到 ,获得积分10
27秒前
李健的小迷弟应助happy采纳,获得10
27秒前
SciGPT应助猪猪hero采纳,获得10
28秒前
28秒前
嚯嚯嚯嚯发布了新的文献求助10
30秒前
xwi完成签到,获得积分10
31秒前
小丸子发布了新的文献求助10
31秒前
大欣完成签到,获得积分10
32秒前
承宇完成签到 ,获得积分10
34秒前
unique444发布了新的文献求助10
35秒前
mysilicon完成签到,获得积分10
36秒前
含糊的泥猴桃完成签到 ,获得积分10
36秒前
哈哈哈完成签到,获得积分10
36秒前
37秒前
wengjc92发布了新的文献求助10
37秒前
37秒前
ljj301完成签到,获得积分10
38秒前
xiao123789发布了新的文献求助10
41秒前
sylnd126发布了新的文献求助10
42秒前
42秒前
高贵宛海发布了新的文献求助10
44秒前
甜橙完成签到 ,获得积分10
45秒前
45秒前
46秒前
qks完成签到 ,获得积分10
46秒前
干净之槐完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966114
求助须知:如何正确求助?哪些是违规求助? 3511490
关于积分的说明 11158539
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324