已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images

计算机科学 挤奶 人工智能 RGB颜色模型 计算机视觉 基本事实 模式识别(心理学) 地理 考古
作者
Amey Bhole,Sandeep S. Udmale,Owen Falzon,George Azzopardi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:192: 116354-116354 被引量:10
标识
DOI:10.1016/j.eswa.2021.116354
摘要

Livestock management involves the monitoring of farm animals by tracking certain physiological and phenotypical characteristics over time. In the dairy industry, for instance, cattle are typically equipped with RFID ear tags. The corresponding data (e.g. milk properties) can then be automatically assigned to the respective cow when they enter the milking station. In order to move towards a more scalable, affordable, and welfare-friendly approach, automatic non-invasive solutions are more desirable. Thus, a non-invasive approach is proposed in this paper for the automatic identification of individual Holstein cattle from the side view while exiting a milking station. It considers input images from a thermal-RGB camera. The thermal images are used to delineate the cow from the background. Subsequently, any occluding rods from the milking station are removed and inpainted with the fast marching algorithm. Then, it extracts the RGB map of the segmented cattle along with a novel CORF3D contour map. The latter contains three contour maps extracted by the Combination of Receptive Fields (CORF) model with different strengths of push–pull inhibition. This mechanism suppresses noise in the form of grain type texture. The effectiveness of the proposed approach is demonstrated by means of experiments using a 5-fold and a leave-one day-out cross-validation on a new data set of 3694 images of 383 cows collected from the Dairy Campus in Leeuwarden (the Netherlands) over 9 days. In particular, when combining RGB and CORF3D maps by late fusion, an average accuracy of 99.64%(±0.13) was obtained for the 5-fold cross validation and 99.71%(±0.31) for the leave-one day-out experiment. The two maps were combined by first learning two ConvNet classification models, one for each type of map. The feature vectors in the two FC layers obtained from training images were then concatenated and used to learn a linear SVM classification model. In principle, the proposed approach with the novel CORF3D contour maps is suitable for various image classification applications, especially where grain type texture is a confounding variable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀不愁发布了新的文献求助10
刚刚
4秒前
5秒前
英俊的铭应助ceeray23采纳,获得20
5秒前
茉莉完成签到 ,获得积分10
6秒前
酷波er应助clove采纳,获得10
7秒前
信哥哥发布了新的文献求助10
7秒前
7秒前
橙橙橙橙发布了新的文献求助10
8秒前
11秒前
11秒前
Owen应助暮然采纳,获得10
12秒前
13秒前
科研小白发布了新的文献求助10
13秒前
14秒前
王仙人发布了新的文献求助10
15秒前
liu发布了新的文献求助10
16秒前
16秒前
zhang完成签到,获得积分10
17秒前
无花果应助科研小白采纳,获得10
17秒前
红豆盖饭发布了新的文献求助10
20秒前
20秒前
SCI完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
李健的小迷弟应助xkx采纳,获得10
23秒前
暮然发布了新的文献求助10
24秒前
贝尔发布了新的文献求助10
26秒前
橘猫ADD发布了新的文献求助10
26秒前
小马甲应助吕凯良采纳,获得10
26秒前
糖配坤完成签到 ,获得积分10
27秒前
呀呀呀完成签到,获得积分10
29秒前
29秒前
耶斯发布了新的文献求助10
29秒前
bruseli完成签到,获得积分20
29秒前
zshenyingt完成签到,获得积分10
34秒前
乐乐应助世隐采纳,获得30
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784