CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images

计算机科学 挤奶 人工智能 RGB颜色模型 计算机视觉 基本事实 模式识别(心理学) 地理 考古
作者
Amey Bhole,Sandeep S. Udmale,Owen Falzon,George Azzopardi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:192: 116354-116354 被引量:10
标识
DOI:10.1016/j.eswa.2021.116354
摘要

Livestock management involves the monitoring of farm animals by tracking certain physiological and phenotypical characteristics over time. In the dairy industry, for instance, cattle are typically equipped with RFID ear tags. The corresponding data (e.g. milk properties) can then be automatically assigned to the respective cow when they enter the milking station. In order to move towards a more scalable, affordable, and welfare-friendly approach, automatic non-invasive solutions are more desirable. Thus, a non-invasive approach is proposed in this paper for the automatic identification of individual Holstein cattle from the side view while exiting a milking station. It considers input images from a thermal-RGB camera. The thermal images are used to delineate the cow from the background. Subsequently, any occluding rods from the milking station are removed and inpainted with the fast marching algorithm. Then, it extracts the RGB map of the segmented cattle along with a novel CORF3D contour map. The latter contains three contour maps extracted by the Combination of Receptive Fields (CORF) model with different strengths of push–pull inhibition. This mechanism suppresses noise in the form of grain type texture. The effectiveness of the proposed approach is demonstrated by means of experiments using a 5-fold and a leave-one day-out cross-validation on a new data set of 3694 images of 383 cows collected from the Dairy Campus in Leeuwarden (the Netherlands) over 9 days. In particular, when combining RGB and CORF3D maps by late fusion, an average accuracy of 99.64%(±0.13) was obtained for the 5-fold cross validation and 99.71%(±0.31) for the leave-one day-out experiment. The two maps were combined by first learning two ConvNet classification models, one for each type of map. The feature vectors in the two FC layers obtained from training images were then concatenated and used to learn a linear SVM classification model. In principle, the proposed approach with the novel CORF3D contour maps is suitable for various image classification applications, especially where grain type texture is a confounding variable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
猪猪侠完成签到,获得积分10
1秒前
Owen应助xiaoxia采纳,获得50
1秒前
1秒前
小黄车发布了新的文献求助10
2秒前
2秒前
小马甲应助MCQ采纳,获得10
2秒前
李健的粉丝团团长应助lt采纳,获得10
2秒前
2秒前
欣喜战斗机完成签到,获得积分10
3秒前
思源应助不争气的棺材板采纳,获得10
3秒前
3秒前
123by完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
柯夫子完成签到,获得积分10
5秒前
5秒前
bkagyin应助hhhuan采纳,获得10
5秒前
彭于晏应助梅梅梅采纳,获得10
5秒前
sscihard完成签到,获得积分10
5秒前
guo发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
mfy0068发布了新的文献求助10
7秒前
Ava应助打死不穿秋裤采纳,获得10
7秒前
任性子骞应助纪修染采纳,获得10
7秒前
7秒前
Rming完成签到,获得积分10
7秒前
专注的亦凝完成签到,获得积分20
7秒前
小雨发布了新的文献求助10
8秒前
8秒前
锅嘚硬发布了新的文献求助10
8秒前
9秒前
9秒前
uu发布了新的文献求助10
10秒前
大胆的如容完成签到,获得积分10
10秒前
正直的沛凝完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750176
求助须知:如何正确求助?哪些是违规求助? 5462457
关于积分的说明 15365731
捐赠科研通 4889341
什么是DOI,文献DOI怎么找? 2629077
邀请新用户注册赠送积分活动 1577365
关于科研通互助平台的介绍 1533966