劈开
核糖核酸
DNA
化学
合理设计
纳米技术
催化作用
核酶
生物物理学
计算生物学
脱氧核酶
生物
生物化学
基因
材料科学
作者
Jan Borggräfe,Julian Victor,Hannah Rosenbach,Aldino Viegas,Christoph G. W. Gertzen,Christine Wuebben,Helena Kovacs,Mohanraj Gopalswamy,Detlev Riesner,Gerhard Steger,Olav Schiemann,Holger Gohlke,Ingrid Span,Manuel Etzkorn
出处
期刊:Nature
[Springer Nature]
日期:2021-12-23
卷期号:601 (7891): 144-149
被引量:85
标识
DOI:10.1038/s41586-021-04225-4
摘要
The 10-23 DNAzyme is one of the most prominent catalytically active DNA sequences1,2. Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential2. However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action3. Here we provide high-resolution NMR characterization of all apparent states of the prototypic 10-23 DNAzyme and present a comprehensive survey of the kinetics and dynamics of its catalytic function. The determined structure and identified metal-ion-binding sites of the precatalytic DNAzyme-RNA complex reveal that the basis of the DNA-mediated catalysis is an interplay among three factors: an unexpected, yet exciting molecular architecture; distinct conformational plasticity; and dynamic modulation by metal ions. We further identify previously hidden rate-limiting transient intermediate states in the DNA-mediated catalytic process via real-time NMR measurements. Using a rationally selected single-atom replacement, we could considerably enhance the performance of the DNAzyme, demonstrating that the acquired knowledge of the molecular structure, its plasticity and the occurrence of long-lived intermediate states constitutes a valuable starting point for the rational design of next-generation DNAzymes.
科研通智能强力驱动
Strongly Powered by AbleSci AI