已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁曼岚完成签到,获得积分10
1秒前
orixero应助有热心愿意采纳,获得10
1秒前
朴素的无招完成签到,获得积分10
3秒前
失眠的霸完成签到,获得积分10
4秒前
4秒前
5秒前
只如初完成签到 ,获得积分10
6秒前
6秒前
小马甲应助北海未暖采纳,获得10
8秒前
彭于晏应助HJJHJH采纳,获得20
8秒前
8秒前
达克赛德完成签到 ,获得积分10
8秒前
9秒前
Capybara完成签到,获得积分10
9秒前
震动的平松完成签到 ,获得积分10
9秒前
炸鸡完成签到 ,获得积分10
10秒前
su发布了新的文献求助10
10秒前
linkin完成签到 ,获得积分10
10秒前
12秒前
追寻的冬寒完成签到 ,获得积分10
12秒前
kfbcj完成签到,获得积分10
14秒前
14秒前
Hello应助VDC采纳,获得10
15秒前
15秒前
lixiaolu完成签到 ,获得积分10
15秒前
16秒前
xliiii发布了新的文献求助10
16秒前
16秒前
冬眠完成签到 ,获得积分10
16秒前
胡一刀完成签到,获得积分10
17秒前
Capybara发布了新的文献求助10
17秒前
18秒前
comeanddo发布了新的文献求助10
19秒前
19秒前
cunzhang发布了新的文献求助10
20秒前
xiao发布了新的文献求助10
20秒前
snah完成签到 ,获得积分10
20秒前
星之芋发布了新的文献求助10
20秒前
人间惊鸿完成签到 ,获得积分10
20秒前
22h发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477372
求助须知:如何正确求助?哪些是违规求助? 3068797
关于积分的说明 9109635
捐赠科研通 2760290
什么是DOI,文献DOI怎么找? 1514752
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699547