TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 物理 量子力学 政治 政治学 法学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FOLLOW发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
asdfzxcv应助小张同学采纳,获得10
1秒前
1秒前
GSR发布了新的文献求助10
1秒前
2秒前
欣喜访冬给欣喜访冬的求助进行了留言
2秒前
qwer1234完成签到,获得积分10
3秒前
zts发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
YMing发布了新的文献求助10
4秒前
THM完成签到,获得积分10
4秒前
4秒前
5秒前
seventhcat完成签到,获得积分10
5秒前
6秒前
缓慢冬莲完成签到,获得积分10
6秒前
lit完成签到 ,获得积分10
6秒前
幽幽完成签到,获得积分10
6秒前
6秒前
小龙发布了新的文献求助10
6秒前
WR发布了新的文献求助10
7秒前
fhghhhjh发布了新的文献求助10
8秒前
脑洞疼应助老实的百招采纳,获得10
8秒前
慎独579完成签到,获得积分10
9秒前
牛奶草莓发布了新的文献求助10
9秒前
上官若男应助Jzag采纳,获得10
10秒前
干净凝梦发布了新的文献求助10
10秒前
酷波er应助十七采纳,获得10
10秒前
YMing完成签到,获得积分10
11秒前
靓丽安萱发布了新的文献求助10
11秒前
24p0发布了新的文献求助10
11秒前
坚定冰菱发布了新的文献求助10
11秒前
燧人氏完成签到,获得积分10
12秒前
大方元风发布了新的文献求助10
12秒前
浮游应助张宝采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403