亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 物理 量子力学 政治 政治学 法学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April完成签到,获得积分10
3秒前
30秒前
30秒前
越听初发布了新的文献求助10
33秒前
JamesPei应助阔达的凝丝采纳,获得10
35秒前
研友_LX62KZ发布了新的文献求助10
36秒前
Tumumu完成签到,获得积分0
38秒前
40秒前
阔达的凝丝给阔达的凝丝的求助进行了留言
44秒前
犬来八荒发布了新的文献求助10
46秒前
温暖大米完成签到 ,获得积分0
57秒前
越听初完成签到,获得积分10
58秒前
哈哈哈完成签到 ,获得积分10
58秒前
浮游应助犬来八荒采纳,获得10
1分钟前
浮游应助犬来八荒采纳,获得10
1分钟前
1分钟前
haha完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小二郎应助XX采纳,获得10
1分钟前
1分钟前
null应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得30
1分钟前
1分钟前
XX发布了新的文献求助10
1分钟前
1分钟前
犬来八荒完成签到,获得积分10
1分钟前
追梦人完成签到 ,获得积分10
1分钟前
清飏应助Ying采纳,获得10
1分钟前
YZChen完成签到,获得积分10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
DragonAca完成签到,获得积分10
2分钟前
销凝发布了新的文献求助10
2分钟前
2分钟前
2分钟前
善学以致用应助销凝采纳,获得10
3分钟前
Iridescent完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634755
求助须知:如何正确求助?哪些是违规求助? 4733350
关于积分的说明 14989201
捐赠科研通 4792464
什么是DOI,文献DOI怎么找? 2559598
邀请新用户注册赠送积分活动 1519929
关于科研通互助平台的介绍 1479999