TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 物理 量子力学 政治 政治学 法学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meixinran完成签到,获得积分10
刚刚
wangweichao关注了科研通微信公众号
刚刚
刚刚
紫麒麟完成签到,获得积分10
刚刚
今后应助裴泡泡采纳,获得10
刚刚
hzh发布了新的文献求助10
刚刚
东方元语完成签到,获得积分0
1秒前
李健应助嘻嘻哈哈采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
自信小懒虫完成签到,获得积分10
2秒前
潇洒的日记本完成签到 ,获得积分20
2秒前
bee发布了新的文献求助10
2秒前
Jane发布了新的文献求助10
3秒前
3秒前
大帅完成签到,获得积分10
4秒前
4秒前
虚拟的飞双完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
Ayla雁翎发布了新的文献求助10
5秒前
夜神月发布了新的文献求助10
5秒前
脑洞疼应助动听无声采纳,获得30
5秒前
Blank完成签到,获得积分10
5秒前
wang发布了新的文献求助10
6秒前
努力上进的小张完成签到,获得积分10
6秒前
神棍喜来乐完成签到,获得积分10
7秒前
现代rong完成签到,获得积分10
7秒前
机智的访云完成签到,获得积分10
7秒前
李爱国应助meixinran采纳,获得10
7秒前
112233445566发布了新的文献求助10
7秒前
hwen1998发布了新的文献求助10
8秒前
一一完成签到,获得积分10
8秒前
8秒前
9秒前
安然完成签到 ,获得积分10
9秒前
yunga发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115