TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助笑点低芫采纳,获得10
刚刚
天道酬勤完成签到,获得积分10
刚刚
Sun发布了新的文献求助10
刚刚
ssp关闭了ssp文献求助
1秒前
tomorrow发布了新的文献求助10
1秒前
认真的火发布了新的文献求助10
2秒前
3秒前
冷酷鱼完成签到,获得积分10
4秒前
Owen应助牛牛采纳,获得10
4秒前
4秒前
4秒前
英俊水池发布了新的文献求助10
4秒前
4秒前
YY发布了新的文献求助10
4秒前
hucchongzi应助向阳采纳,获得10
5秒前
搜集达人应助Liu采纳,获得10
5秒前
嘟嘟完成签到,获得积分10
7秒前
8秒前
9秒前
艺术家发布了新的文献求助10
9秒前
9秒前
golden完成签到,获得积分10
10秒前
11秒前
彭于彦祖应助178181采纳,获得30
11秒前
上官若男应助要减肥的莛采纳,获得10
11秒前
12秒前
在水一方应助认真的火采纳,获得10
13秒前
13秒前
13秒前
凉凉盛夏完成签到,获得积分10
14秒前
14秒前
ykmykm完成签到,获得积分20
15秒前
Lemon发布了新的文献求助20
15秒前
15秒前
乏味发布了新的文献求助10
15秒前
小二郎应助YY采纳,获得10
16秒前
16秒前
从不内卷完成签到,获得积分10
16秒前
17秒前
自然馈赠发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113