已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助哈哈哈采纳,获得10
1秒前
jojo发布了新的文献求助10
1秒前
科研通AI6应助拉长的人雄采纳,获得10
2秒前
JamesPei应助牧笛采纳,获得10
2秒前
驼鹿队长完成签到,获得积分10
4秒前
ding应助Ni采纳,获得10
5秒前
5秒前
科研通AI6应助抹茶木木采纳,获得10
7秒前
8秒前
LJP发布了新的文献求助10
8秒前
科目三应助nicholas采纳,获得10
9秒前
HHH完成签到 ,获得积分10
9秒前
10秒前
imagine完成签到,获得积分10
10秒前
11秒前
安详的海风完成签到,获得积分10
13秒前
Ni发布了新的文献求助10
13秒前
张某某完成签到,获得积分10
13秒前
14秒前
15秒前
打打应助LJP采纳,获得10
15秒前
完美世界应助彬彬采纳,获得10
16秒前
科研通AI6应助悬铃木采纳,获得10
16秒前
18秒前
18秒前
19秒前
JM发布了新的文献求助10
19秒前
酷波er应助云澈采纳,获得10
20秒前
20秒前
爱lx完成签到,获得积分10
20秒前
RC发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
榴芒兔发布了新的文献求助10
24秒前
巫马尔槐发布了新的文献求助10
24秒前
英姑应助馒头爸爸采纳,获得10
25秒前
qq完成签到 ,获得积分10
25秒前
上官若男应助JM采纳,获得10
25秒前
好运来发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558