亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 物理 量子力学 政治 政治学 法学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅绮兰完成签到 ,获得积分10
1秒前
cjfc发布了新的文献求助10
4秒前
NexusExplorer应助mm采纳,获得10
6秒前
lijiawei完成签到,获得积分10
8秒前
10秒前
Ava应助cjfc采纳,获得10
15秒前
Mr完成签到 ,获得积分10
19秒前
HaonanZhang发布了新的文献求助10
19秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
嘿嘿应助科研通管家采纳,获得10
20秒前
JoeyJin完成签到,获得积分10
25秒前
ceeray23发布了新的文献求助20
25秒前
科研通AI2S应助中野霊乃采纳,获得10
28秒前
36秒前
养乐多敬你完成签到 ,获得积分10
37秒前
45秒前
无情的问枫完成签到 ,获得积分10
49秒前
万能图书馆应助研猫采纳,获得10
49秒前
51秒前
1分钟前
haiboe完成签到,获得积分10
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
crabcrab29完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助中野霊乃采纳,获得10
1分钟前
暴走小面包完成签到 ,获得积分10
1分钟前
1分钟前
阿宇发布了新的文献求助10
1分钟前
1分钟前
crabcrab29发布了新的文献求助10
1分钟前
mm发布了新的文献求助10
1分钟前
一日落叶发布了新的文献求助10
1分钟前
张KT发布了新的文献求助10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
酷炫的爆米花完成签到,获得积分10
1分钟前
香菜芋头发布了新的文献求助30
1分钟前
哈哈666完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508