亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network

计算机科学 图形 数据挖掘 人工智能 卷积神经网络 交通生成模型 发电机(电路理论) 机器学习 生成语法 生成对抗网络 特征学习 代表(政治) 理论计算机科学 深度学习 功率(物理) 实时计算 政治 物理 量子力学 法学 政治学
作者
Alkilane Khaled,Alfateh M. Tag Elsir,Yanming Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108990-108990 被引量:18
标识
DOI:10.1016/j.knosys.2022.108990
摘要

Traffic forecasting constitutes a task of great importance in intelligent transport systems. Owing to the non-Euclidean structure of traffic data, the complicated spatial correlations, and the dynamic temporal dependencies, it is challenging to predict traffic accurately. Despite the fact that few prior studies have considered the interconnections between multiple traffic nodes at the same timestep, the majority of studies fail to capture the dependencies among multiple nodes at different timesteps. Furthermore, most existing work generates shallow graphs based solely on the distance between traffic nodes, which limits their representation competence and declines their power in capturing complex correlations. In particular, inspired by the recent breakthroughs in the generative adversarial network (GAN) and the power of the graph convolution network (GCN) in handling non-Euclidean data, this paper puts forward an adversarial multi-graph convolutional neural network model, named TFGAN, to address the abovementioned problems. We integrate the unsupervised model elasticity with the supervision provided by supervised training to help the GAN generator model generates accurate traffic predictions. To improve the representation and model the implicit correlations effectively, multiple GCNs are constructed within the generator based on various perspectives, such as similarity, correlation, and spatial distance. Meanwhile, GRU and self-attention are applied after each graph to capture the dynamic temporal dependencies across nodes. The comprehensive experiments on three different traffic variables (traffic flow, speed, and travel time) using six real-world traffic datasets demonstrate that TFGAN outperforms the related state-of-the-art models and achieves significant results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
二十九完成签到,获得积分10
11秒前
amengptsd完成签到,获得积分10
16秒前
21秒前
受伤纲完成签到 ,获得积分10
23秒前
25秒前
柠栀完成签到 ,获得积分10
25秒前
杜梦婷发布了新的文献求助10
26秒前
30秒前
34秒前
机灵毛豆完成签到 ,获得积分10
36秒前
39秒前
40秒前
青柠完成签到,获得积分10
40秒前
FashionBoy应助杜梦婷采纳,获得10
40秒前
科目三应助落花生采纳,获得10
41秒前
42秒前
42秒前
beiwei完成签到 ,获得积分10
43秒前
lhn发布了新的文献求助10
44秒前
SweetyTian发布了新的文献求助10
45秒前
洁净百川完成签到 ,获得积分10
45秒前
47秒前
cjy发布了新的文献求助10
49秒前
Dream点壹完成签到,获得积分0
51秒前
老实涑发布了新的文献求助10
51秒前
英姑应助cjy采纳,获得10
52秒前
53秒前
56秒前
落花生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
完美的水杯完成签到 ,获得积分10
1分钟前
1分钟前
月见完成签到 ,获得积分10
1分钟前
脑洞疼应助OnlyHarbour采纳,获得10
1分钟前
铠甲勇士完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助坦率的尔冬采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509257
求助须知:如何正确求助?哪些是违规求助? 4604224
关于积分的说明 14489437
捐赠科研通 4538934
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441882