A comparative study of different neural network models for landslide susceptibility mapping

计算机科学 卷积神经网络 人工神经网络 山崩 混淆矩阵 人工智能 接收机工作特性 科恩卡帕 多层感知器 感知器 卡帕 数据集 模式识别(心理学) 数据挖掘 统计 数学 机器学习 地质学 几何学 岩土工程
作者
Zhan'ao Zhao,Yi He,Sheng Yao,Yang Wang,Wenhui Wang,Lifeng Zhang,Qiang Sun
出处
期刊:Advances in Space Research [Elsevier]
卷期号:70 (2): 383-401 被引量:41
标识
DOI:10.1016/j.asr.2022.04.055
摘要

• MLP, GRU, CNN and MSCNN for landslide susceptibility mapping were compared. • CNN combined with multi-scale technique can improve feature utilization. • The joint evaluation method of ROC curve and PR curve for LSM was proposed. Landslide susceptibility mapping (LSM) can be used to determine the spatial probability of landslide occurrence. There are many methods for LSM, including statistical methods, traditional machine learning methods and deep learning methods, etc. However, the difference comparison of these methods has been not perfect, especially the comparison of different neural network models for LSM and their application prospects were rarely studied. In this paper, the classical neural net-work multi-layer perceptron (MLP), convolutional neural network (CNN), gated recurrent unit (GRU) and multi-scale convolutional neural network (MSCNN) four models are selected for comparison. Taking Lanzhou city, Gansu Province, China as an example, eight landslide-related influencing factors and historical landslide and non-landslide locations were selected, and the training set and validation set were divided according to 7:3. Through training the four models, four landslide susceptibility maps were generated. The experimental results were verified and compared by the confusion matrix, Kappa coefficient, F1-score and other statistical indicators. The receiver operating characteristic (ROC) curve and Precision-Recall (PR) curve were plotted to evaluate the classification effect and generalization capability of four models. The results show that the constructed MSCNN is the optimal model, which has the best performance both in the training process and in the mapping results. MSCNN model has the highest value of Recall (99.93%), Kappa (0.96) and F1-score (0.98) in the confusion matrix. In addition, ROC curve and PR curve of MSCNN model maintain the maximum area under curve (AUC) on different data sets. In the comparison, MLP and GRU accept sequence features, while CNN and MSCNN accept neighborhood features. In general, the prediction model considering neighborhood features contains more information in the limited input data and is better than the prediction model considering sequence features in all evaluation indicators. Therefore, we think that the neighborhood features can better represent the landslide occurrence characteristics. In the future model design process for LSM, more attention should be paid to the neighborhood features of landslide influencing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助胡图图采纳,获得10
1秒前
leiyuekai发布了新的文献求助10
1秒前
屿鑫完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Jian完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
JJ索发布了新的文献求助10
6秒前
科目三应助yutian采纳,获得10
7秒前
SI完成签到 ,获得积分10
7秒前
多情雨灵发布了新的文献求助10
7秒前
玉玉完成签到,获得积分10
8秒前
sa发布了新的文献求助10
8秒前
冷傲的罡发布了新的文献求助10
9秒前
Jian发布了新的文献求助10
9秒前
越越发布了新的文献求助10
10秒前
10秒前
12秒前
pancake发布了新的文献求助30
12秒前
12秒前
12秒前
cicytjsxjr发布了新的文献求助10
13秒前
科研通AI6.1应助娜娜采纳,获得10
13秒前
风汐5423完成签到,获得积分10
14秒前
17秒前
hotongue发布了新的文献求助10
18秒前
19秒前
Criminology34应助JJ索采纳,获得10
21秒前
安详发布了新的文献求助10
21秒前
21秒前
李健的小迷弟应助Ruby采纳,获得10
22秒前
Momomo应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896