作者
Zhan'ao Zhao,Yi He,Sheng Yao,Wang Yang,Wen-Hui Wang,Lifeng Zhang,Qiang Sun
摘要
• MLP, GRU, CNN and MSCNN for landslide susceptibility mapping were compared. • CNN combined with multi-scale technique can improve feature utilization. • The joint evaluation method of ROC curve and PR curve for LSM was proposed. Landslide susceptibility mapping (LSM) can be used to determine the spatial probability of landslide occurrence. There are many methods for LSM, including statistical methods, traditional machine learning methods and deep learning methods, etc. However, the difference comparison of these methods has been not perfect, especially the comparison of different neural network models for LSM and their application prospects were rarely studied. In this paper, the classical neural net-work multi-layer perceptron (MLP), convolutional neural network (CNN), gated recurrent unit (GRU) and multi-scale convolutional neural network (MSCNN) four models are selected for comparison. Taking Lanzhou city, Gansu Province, China as an example, eight landslide-related influencing factors and historical landslide and non-landslide locations were selected, and the training set and validation set were divided according to 7:3. Through training the four models, four landslide susceptibility maps were generated. The experimental results were verified and compared by the confusion matrix, Kappa coefficient, F1-score and other statistical indicators. The receiver operating characteristic (ROC) curve and Precision-Recall (PR) curve were plotted to evaluate the classification effect and generalization capability of four models. The results show that the constructed MSCNN is the optimal model, which has the best performance both in the training process and in the mapping results. MSCNN model has the highest value of Recall (99.93%), Kappa (0.96) and F1-score (0.98) in the confusion matrix. In addition, ROC curve and PR curve of MSCNN model maintain the maximum area under curve (AUC) on different data sets. In the comparison, MLP and GRU accept sequence features, while CNN and MSCNN accept neighborhood features. In general, the prediction model considering neighborhood features contains more information in the limited input data and is better than the prediction model considering sequence features in all evaluation indicators. Therefore, we think that the neighborhood features can better represent the landslide occurrence characteristics. In the future model design process for LSM, more attention should be paid to the neighborhood features of landslide influencing factors.