A comparative study of different neural network models for landslide susceptibility mapping

计算机科学 卷积神经网络 人工神经网络 山崩 混淆矩阵 人工智能 接收机工作特性 科恩卡帕 多层感知器 感知器 模式识别(心理学) 数据挖掘 机器学习 地质学 岩土工程
作者
Zhan'ao Zhao,Yi He,Sheng Yao,Wang Yang,Wen-Hui Wang,Lifeng Zhang,Qiang Sun
出处
期刊:Advances in Space Research [Elsevier]
卷期号:70 (2): 383-401 被引量:1
标识
DOI:10.1016/j.asr.2022.04.055
摘要

• MLP, GRU, CNN and MSCNN for landslide susceptibility mapping were compared. • CNN combined with multi-scale technique can improve feature utilization. • The joint evaluation method of ROC curve and PR curve for LSM was proposed. Landslide susceptibility mapping (LSM) can be used to determine the spatial probability of landslide occurrence. There are many methods for LSM, including statistical methods, traditional machine learning methods and deep learning methods, etc. However, the difference comparison of these methods has been not perfect, especially the comparison of different neural network models for LSM and their application prospects were rarely studied. In this paper, the classical neural net-work multi-layer perceptron (MLP), convolutional neural network (CNN), gated recurrent unit (GRU) and multi-scale convolutional neural network (MSCNN) four models are selected for comparison. Taking Lanzhou city, Gansu Province, China as an example, eight landslide-related influencing factors and historical landslide and non-landslide locations were selected, and the training set and validation set were divided according to 7:3. Through training the four models, four landslide susceptibility maps were generated. The experimental results were verified and compared by the confusion matrix, Kappa coefficient, F1-score and other statistical indicators. The receiver operating characteristic (ROC) curve and Precision-Recall (PR) curve were plotted to evaluate the classification effect and generalization capability of four models. The results show that the constructed MSCNN is the optimal model, which has the best performance both in the training process and in the mapping results. MSCNN model has the highest value of Recall (99.93%), Kappa (0.96) and F1-score (0.98) in the confusion matrix. In addition, ROC curve and PR curve of MSCNN model maintain the maximum area under curve (AUC) on different data sets. In the comparison, MLP and GRU accept sequence features, while CNN and MSCNN accept neighborhood features. In general, the prediction model considering neighborhood features contains more information in the limited input data and is better than the prediction model considering sequence features in all evaluation indicators. Therefore, we think that the neighborhood features can better represent the landslide occurrence characteristics. In the future model design process for LSM, more attention should be paid to the neighborhood features of landslide influencing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇文琪完成签到,获得积分20
刚刚
李一给李一的求助进行了留言
1秒前
1秒前
大海发布了新的文献求助10
2秒前
白小施发布了新的文献求助10
2秒前
2秒前
bzy发布了新的文献求助10
3秒前
柳叶刀小猪给包子的求助进行了留言
3秒前
HIT_WXY发布了新的文献求助10
3秒前
香蕉觅云应助峰宝宝采纳,获得10
3秒前
吴兰田发布了新的文献求助30
4秒前
456发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
7秒前
chr完成签到,获得积分10
7秒前
小奕应助wuyu采纳,获得10
7秒前
AzureWindX发布了新的文献求助10
7秒前
Lin发布了新的文献求助10
7秒前
joey完成签到,获得积分10
8秒前
Hysen_L完成签到,获得积分10
8秒前
华仔应助眰恦采纳,获得10
9秒前
9秒前
9秒前
白小施完成签到,获得积分10
9秒前
冷艳的完成签到,获得积分10
10秒前
科研通AI2S应助zzq采纳,获得10
10秒前
wjd完成签到 ,获得积分10
10秒前
lili发布了新的文献求助20
10秒前
卜靖荷完成签到,获得积分10
10秒前
11秒前
呼延含双完成签到,获得积分10
11秒前
11秒前
HIT_WXY完成签到,获得积分10
11秒前
11秒前
昭明完成签到,获得积分10
12秒前
毒蛇如我发布了新的文献求助10
12秒前
汉堡包应助bzy采纳,获得10
12秒前
岁月见完成签到,获得积分10
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684