Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

对抗制 计算机科学 稳健性(进化) 入侵检测系统 人工智能 深层神经网络 计算机安全 逃避(道德) 深度学习 机器学习 人工神经网络 入侵 生物化学 化学 免疫系统 地球化学 生物 免疫学 基因 地质学
作者
Chaoyun Zhang,Xavier Costa‐Pérez,Paul Patras
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:30 (3): 1294-1311 被引量:82
标识
DOI:10.1109/tnet.2021.3137084
摘要

Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples. Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high importance, but requires to address daunting challenges. Here, we introduce TIKI- TAKA, a general framework for (i) assessing the robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses, we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and makes the case for their adoption when designing robust and reliable deep anomaly detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李同学完成签到,获得积分10
1秒前
芷兰丁香发布了新的文献求助10
1秒前
麦麦完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
June完成签到,获得积分10
2秒前
慕青应助邮寄短诗采纳,获得10
2秒前
Jasper应助兔兔采纳,获得10
2秒前
Stella应助悦己采纳,获得30
3秒前
3秒前
3秒前
正好完成签到,获得积分10
4秒前
vcc完成签到 ,获得积分10
4秒前
夕荀发布了新的文献求助10
4秒前
安徒生完成签到,获得积分10
5秒前
5秒前
无语完成签到,获得积分10
5秒前
周周发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助彳亍采纳,获得10
6秒前
林炎发布了新的文献求助10
6秒前
小羽完成签到 ,获得积分10
7秒前
8秒前
追寻紫夏完成签到 ,获得积分10
8秒前
霸气的菠萝完成签到,获得积分10
8秒前
Wen完成签到,获得积分10
8秒前
开放青旋应助苏silence采纳,获得80
8秒前
9秒前
yu完成签到 ,获得积分10
9秒前
Lucifer完成签到,获得积分10
9秒前
9秒前
9秒前
11完成签到,获得积分10
9秒前
scanker1981完成签到,获得积分10
9秒前
深情安青应助zhaopenghui采纳,获得10
10秒前
小星星完成签到 ,获得积分10
10秒前
600完成签到,获得积分10
10秒前
guohh完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034