Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

对抗制 计算机科学 稳健性(进化) 入侵检测系统 人工智能 深层神经网络 计算机安全 逃避(道德) 深度学习 机器学习 人工神经网络 入侵 生物化学 化学 免疫系统 地球化学 生物 免疫学 基因 地质学
作者
Chaoyun Zhang,Xavier Costa‐Pérez,Paul Patras
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:30 (3): 1294-1311 被引量:82
标识
DOI:10.1109/tnet.2021.3137084
摘要

Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples. Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high importance, but requires to address daunting challenges. Here, we introduce TIKI- TAKA, a general framework for (i) assessing the robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses, we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and makes the case for their adoption when designing robust and reliable deep anomaly detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助STP顶峰相见采纳,获得10
刚刚
CQUT发布了新的文献求助10
1秒前
cy完成签到,获得积分10
1秒前
1秒前
1秒前
蜡笔小新发布了新的文献求助10
1秒前
白色的风车完成签到,获得积分10
1秒前
2秒前
2秒前
三金同学发布了新的文献求助10
3秒前
3秒前
万能图书馆应助杨lei采纳,获得10
3秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
4秒前
可爱的函函应助竹萧采纳,获得10
4秒前
英吉利25发布了新的文献求助10
6秒前
小科完成签到,获得积分10
6秒前
敬老院N号发布了新的文献求助10
6秒前
上官若男应助Toma采纳,获得10
6秒前
6秒前
cy发布了新的文献求助30
6秒前
PAUL完成签到,获得积分10
6秒前
玉鱼儿发布了新的文献求助10
7秒前
彪壮的吐司完成签到,获得积分10
7秒前
科研通AI2S应助123采纳,获得80
7秒前
7秒前
7秒前
7秒前
8秒前
zz发布了新的文献求助30
8秒前
Dre4m_Z完成签到,获得积分10
8秒前
9秒前
饶天源发布了新的文献求助10
9秒前
sy发布了新的文献求助10
9秒前
王乾宇发布了新的文献求助10
9秒前
科研通AI6.1应助ww采纳,获得10
9秒前
OvO发布了新的文献求助10
10秒前
沉静的诗桃完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805