Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

对抗制 计算机科学 稳健性(进化) 入侵检测系统 人工智能 深层神经网络 计算机安全 逃避(道德) 深度学习 机器学习 人工神经网络 入侵 生物化学 化学 免疫系统 地球化学 生物 免疫学 基因 地质学
作者
Chaoyun Zhang,Xavier Costa‐Pérez,Paul Patras
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:30 (3): 1294-1311 被引量:82
标识
DOI:10.1109/tnet.2021.3137084
摘要

Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples. Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high importance, but requires to address daunting challenges. Here, we introduce TIKI- TAKA, a general framework for (i) assessing the robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses, we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and makes the case for their adoption when designing robust and reliable deep anomaly detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿丶完成签到 ,获得积分10
1秒前
ZXY完成签到 ,获得积分10
1秒前
Alexbirchurros完成签到 ,获得积分10
1秒前
5秒前
贪玩的蝴蝶完成签到 ,获得积分10
6秒前
周洋完成签到,获得积分10
6秒前
Chosen_1完成签到,获得积分10
6秒前
hh完成签到,获得积分10
6秒前
iNk应助啦啦啦采纳,获得20
7秒前
老妖怪完成签到,获得积分10
7秒前
稳重的灵安完成签到,获得积分10
8秒前
8秒前
niania发布了新的文献求助10
9秒前
11秒前
wangwangwang完成签到,获得积分10
11秒前
美好斓发布了新的文献求助20
12秒前
whandzxl完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
dengqin完成签到 ,获得积分10
21秒前
21秒前
23秒前
Gauss应助234采纳,获得30
23秒前
power完成签到,获得积分10
25秒前
Rondab应助tl123456采纳,获得10
27秒前
名丿完成签到,获得积分10
27秒前
Hatexist应助香蕉秋寒采纳,获得10
28秒前
愉快幻悲发布了新的文献求助10
28秒前
31秒前
小雨点完成签到,获得积分10
32秒前
34秒前
34秒前
34秒前
keeno完成签到,获得积分10
35秒前
nicewink发布了新的文献求助10
36秒前
星河梦枕完成签到,获得积分10
37秒前
pluto完成签到,获得积分20
37秒前
小张发布了新的文献求助30
38秒前
dengdengdeng发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405