Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

对抗制 计算机科学 稳健性(进化) 入侵检测系统 人工智能 深层神经网络 计算机安全 逃避(道德) 深度学习 机器学习 人工神经网络 入侵 基因 免疫学 化学 地质学 免疫系统 生物 生物化学 地球化学
作者
Chaoyun Zhang,Xavier Costa‐Pérez,Paul Patras
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:30 (3): 1294-1311 被引量:82
标识
DOI:10.1109/tnet.2021.3137084
摘要

Neural networks (NNs) are increasingly popular in developing NIDS, yet can prove vulnerable to adversarial examples. Through these, attackers that may be oblivious to the precise mechanics of the targeted NIDS add subtle perturbations to malicious traffic features, with the aim of evading detection and disrupting critical systems. Defending against such adversarial attacks is of high importance, but requires to address daunting challenges. Here, we introduce TIKI- TAKA, a general framework for (i) assessing the robustness of state-of-the-art deep learning-based NIDS against adversarial manipulations, and which (ii) incorporates defense mechanisms that we propose to increase resistance to attacks employing such evasion techniques. Specifically, we select five cutting-edge adversarial attack types to subvert three popular malicious traffic detectors that employ NNs. We experiment with publicly available datasets and consider both one-to-all and one-to-one classification scenarios, i.e., discriminating illicit vs benign traffic and respectively identifying specific types of anomalous traffic among many observed. The results obtained reveal that attackers can evade NIDS with up to 35.7% success rates, by only altering time-based features of the traffic generated. To counteract these weaknesses, we propose three defense mechanisms: model voting ensembling, ensembling adversarial training, and query detection. We demonstrate that these methods can restore intrusion detection rates to nearly 100% against most types of malicious traffic, and attacks with potentially catastrophic consequences (e.g., botnet) can be thwarted. This confirms the effectiveness of our solutions and makes the case for their adoption when designing robust and reliable deep anomaly detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huaxuxu发布了新的文献求助10
2秒前
3秒前
wu发布了新的文献求助10
3秒前
霸气的代天完成签到,获得积分10
4秒前
4秒前
Bab完成签到,获得积分10
5秒前
贪玩的访风完成签到 ,获得积分10
5秒前
6秒前
shfgref发布了新的文献求助10
6秒前
小李完成签到,获得积分10
6秒前
科研通AI5应助无奈的老姆采纳,获得10
7秒前
7秒前
在水一方应助cw1231采纳,获得10
7秒前
王77发布了新的文献求助10
8秒前
9秒前
wu完成签到,获得积分10
9秒前
9秒前
ZHT发布了新的文献求助10
10秒前
灬谢池春i完成签到,获得积分10
15秒前
积极的访云完成签到,获得积分10
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
orixero应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
墨白发布了新的文献求助10
16秒前
Zoey发布了新的文献求助10
18秒前
CodeCraft应助明天会更好采纳,获得10
18秒前
18秒前
王77完成签到,获得积分10
18秒前
万能图书馆应助12313513551采纳,获得30
19秒前
19秒前
桐桐应助huaxuxu采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589435
求助须知:如何正确求助?哪些是违规求助? 3157698
关于积分的说明 9516741
捐赠科研通 2860722
什么是DOI,文献DOI怎么找? 1571956
邀请新用户注册赠送积分活动 737602
科研通“疑难数据库(出版商)”最低求助积分说明 722452