生物相容性
材料科学
碱性磷酸酶
细胞外基质
成骨细胞
腐蚀
模拟体液
脐静脉
壳聚糖
核化学
化学
体外
复合材料
冶金
生物化学
扫描电子显微镜
酶
作者
Zhenbao Zhang,Xirao Sun,Jingxin Yang,Chengyue Wang
标识
DOI:10.1177/08853282211049296
摘要
Magnesium (Mg) alloy with good mechanical properties and biodegradability is considered as one of the ideal bone repair materials. However, the rapid corrosion of Mg-based metals can pose harm to the function of an implant in clinical applications. In this study, micro-arc oxidation coating was prepared on the surface of the Mg–Ca matrix, then the chitosan and mineralized collagen (nano-hydroxyapatite/collagen; nHAC) were immobilized on the surface of the MAO/Mg–Ca matrix to construct the CS-nHAC/Mg–Ca composites of different component proportions (the ratio of CS to nHAC is 2:1, 1:1, and 1:2, respectively). The corrosion resistance, osteogenic activity, and angiogenic ability were extensively investigated. The results indicated that the CS-nHAC reinforcement materials can improve the corrosion resistance of the Mg matrix significantly and promote the proliferation and adhesion of mouse embryo osteoblast precursor cells (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs). In addition, the CS-nHAC/Mg–Ca composites can not only promote the alkaline phosphatase (ALP) activity and extracellular matrix mineralization of MC3T3-E1 cells but also enhance the migration motility and vascular endothelial growth factor (VEGF) expression of HUVECs. Meanwhile, the 2CS-1nHAC/Mg–Ca composite exhibited the optimum function characteristics compared with other samples. Therefore, considering the improvement of corrosion resistance and biocompatibility, the CS-nHAC/Mg–Ca composites are expected to be a promising orthopedic implant.
科研通智能强力驱动
Strongly Powered by AbleSci AI