亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Cooperative Method With Lévy Flights for Electric Vehicle Charge Scheduling

可扩展性 数学优化 粒子群优化 调度(生产过程) 电动汽车 计算机科学 动态规划 数学 物理 量子力学 数据库 功率(物理)
作者
Arun Kumar Kalakanti,Shrisha Rao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 14306-14321 被引量:18
标识
DOI:10.1109/tits.2021.3127352
摘要

With the advent of electric vehicles (EVs), issues connected to the electric vehicle charging scheduling (EVCS) problem, which is $\textsf {NP}$ -hard, have become important. In previous studies, EVCS has been mainly formulated as a constrained shortest-path problem; however, such formulations have not involved variables such as charging rates, traffic congestion, scalability, and waiting time at charging station (CS), that need to be considered in practical settings. Earlier research has also tended to focus on the strengths of particular evolutionary optimization algorithms like differential evolution (DE) or particle swarm optimization (PSO) over others or traditional mathematical programming methods, with only a limited study of hybrid approaches. In this paper, fast and slow charging options at a station are considered in the EVCS problem for practical use. In previous studies, EVs have been considered to have fixed speeds; however, in order to mitigate CS congestion and thus waiting times at CSs, dynamic speed control of EVs has been considered in this work. This work also investigates the scalability of different EVCS solutions. A hybrid approach using PSO and the Firefly algorithm (FFA) with a Lévy flights search strategy is designed and implemented to solve the EVCS. Also, different hybrid methods variants of PSO and FFA have been evaluated in this paper to find the best performing hybrid variant. Experimental results validate the effectiveness of our approach on both synthetic and the real-world transportation networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_38KgB8完成签到,获得积分20
1秒前
研友_38KgB8发布了新的文献求助10
3秒前
金www完成签到 ,获得积分10
4秒前
bkagyin应助魁梧的鸿煊采纳,获得10
4秒前
7秒前
所所应助研友_38KgB8采纳,获得10
7秒前
星辰大海应助honeyzh采纳,获得10
8秒前
殊途完成签到,获得积分10
10秒前
11秒前
殊途发布了新的文献求助10
14秒前
zhou发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
yyst发布了新的文献求助10
21秒前
Orange应助殊途采纳,获得10
22秒前
Peix完成签到 ,获得积分10
24秒前
小汪大黑蛋子关注了科研通微信公众号
27秒前
爆米花应助Bake采纳,获得10
32秒前
35秒前
zhou完成签到,获得积分10
38秒前
41秒前
wanci应助明亮的八宝粥采纳,获得10
41秒前
Lorin完成签到,获得积分10
46秒前
1分钟前
LC完成签到,获得积分10
1分钟前
1分钟前
Bake完成签到,获得积分10
1分钟前
1分钟前
Bake发布了新的文献求助10
1分钟前
朴素的书琴完成签到,获得积分10
1分钟前
852应助魁梧的鸿煊采纳,获得10
1分钟前
南风应助隐形问萍采纳,获得10
1分钟前
科研通AI2S应助隐形问萍采纳,获得10
1分钟前
汉堡包应助隐形问萍采纳,获得10
1分钟前
爆米花应助隐形问萍采纳,获得10
1分钟前
今后应助隐形问萍采纳,获得10
1分钟前
深情安青应助隐形问萍采纳,获得10
1分钟前
优秀向梦应助隐形问萍采纳,获得10
1分钟前
研友_VZG7GZ应助隐形问萍采纳,获得10
1分钟前
深情安青应助开心千青采纳,获得10
1分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417533
求助须知:如何正确求助?哪些是违规求助? 3019181
关于积分的说明 8886754
捐赠科研通 2706621
什么是DOI,文献DOI怎么找? 1484400
科研通“疑难数据库(出版商)”最低求助积分说明 685981
邀请新用户注册赠送积分活动 681147