Interval type-2 outlier-robust picture fuzzy clustering and its application in medical image segmentation

离群值 聚类分析 模糊聚类 数据挖掘 模糊集 模式识别(心理学) 人工智能 模糊逻辑 计算机科学 模糊分类 火焰团簇 数学 CURE数据聚类算法
作者
Yingxu Wang,Long Chen,Jin Zhou,Tianjun Li,C. L. Philip Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108891-108891 被引量:19
标识
DOI:10.1016/j.asoc.2022.108891
摘要

Based on picture fuzzy set theory, picture fuzzy clustering has achieved good results on some data as more information is involved in the clustering process. However, current picture fuzzy clustering methods still suffer from two common weaknesses, i.e., the sensitivity to outliers and the neglect of the uncertainty caused by different fuzzy degrees, which influence their performance in practical applications like medical image segmentation. To solve these issues, we present two new picture fuzzy clustering methods in this paper. First, to improve immunity to outliers, we propose an outlier-robust picture fuzzy clustering method named ORPFC by using a robust distance measurement, which treats the data objects far away from cluster prototypes as outliers and limits their effects on the prototype update. Second, to handle the uncertainty caused by fuzzy degrees, we further present an interval type-2 enhanced method called IT2ORPFC by incorporating the interval type-2 fuzzy set theory into ORPFC. In each iteration, IT2ORPFC estimates positive memberships, neutral memberships, and refusal memberships according to different fuzzification coefficients and then conducts type reduction for reliable type-1 clustering results. In the experiments, the proposed methods obtain robust and reliable results on eleven datasets. Specifically, ORPFC and IT2ORPFC achieve rewarding performance on segmenting medical images with noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助llll采纳,获得10
刚刚
harry应助纸轮采纳,获得10
1秒前
乐乐应助蔚蓝天空采纳,获得10
1秒前
无花果应助可爱的兔兔采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
8秒前
研友_EZ1oWL发布了新的文献求助10
8秒前
9秒前
彭于晏应助hhh采纳,获得30
9秒前
linmo发布了新的文献求助10
9秒前
温婉的从凝完成签到,获得积分20
11秒前
孟梦完成签到 ,获得积分20
11秒前
12秒前
平贝花应助mtfx采纳,获得10
13秒前
pyh发布了新的文献求助10
13秒前
14秒前
yao发布了新的文献求助10
15秒前
火星上的诗兰完成签到,获得积分10
15秒前
15秒前
xiaoxie发布了新的文献求助20
16秒前
18秒前
pyh关闭了pyh文献求助
18秒前
18秒前
慕青应助bzsyr采纳,获得10
18秒前
领导范儿应助wlguo采纳,获得10
18秒前
蝉子发布了新的文献求助10
18秒前
20秒前
fight完成签到,获得积分10
20秒前
充电宝应助兴奋的梦旋采纳,获得50
21秒前
22秒前
22秒前
医学小王完成签到 ,获得积分10
23秒前
可爱的兔兔完成签到,获得积分10
23秒前
socras完成签到 ,获得积分10
23秒前
Ava应助pistachio采纳,获得10
24秒前
隐形曼青应助Laneyliu采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176