应用数学
数学
常量(计算机编程)
基本再生数
扩散
传输(电信)
李雅普诺夫函数
操作员(生物学)
稳定性理论
表达式(计算机科学)
统计物理学
数学分析
计算机科学
物理
生物
人口
人口学
电信
生物化学
抑制因子
非线性系统
量子力学
社会学
转录因子
基因
热力学
程序设计语言
作者
Hao Qu,Tianli Jiang,Jinliang Wang,Jiantao Zhao
标识
DOI:10.1142/s1793524522500693
摘要
To investigate the impact of the fixed latent periods in the human and vector populations on the disease transmission in heterogenous environment, we formulate a nonlocal and time-delayed reaction-diffusion (NLTD-RD) system. By appealing to the next generation operator (NGO), we define the basic reproduction number (BRN) [Formula: see text], and prove it as a threshold parameter for indicating whether disease persists or not. Specifically, if [Formula: see text], the disease-free equilibrium is globally asymptotically stable, while if [Formula: see text], the disease is shown to be uniformly persistent. In the homogeneous case that all parameters are assumed to be constants, the explicit expression of [Formula: see text] is obtained. We further achieved the global attractivity of the constant equilibria by utilizing Lyapunov functionals. Numerical simulations are performed to verify the theoretical results and the effects of the diffusion rate on disease transmission.
科研通智能强力驱动
Strongly Powered by AbleSci AI