材料科学
阳极
无定形固体
假电容
悬空债券
电化学
钠
离子
化学工程
纳米技术
硅
电极
冶金
结晶学
物理化学
超级电容器
化学
物理
量子力学
工程类
作者
Shaozhuan Huang,Lixiang Liu,Yun Zheng,Ye Wang,Dezhi Kong,Yingmeng Zhang,Yumeng Shi,Lin Zhang,Oliver G. Schmidt,Hui Ying Yang
标识
DOI:10.1002/adma.201706637
摘要
Alloying-type materials are promising anodes for high-performance sodium-ion batteries (SIBs) because of their high capacities and low Na-ion insertion potentials. However, the typical candidates, such as P, Sn, Sb, and Pb, suffer from severe volume changes (≈293-487%) during the electrochemical reactions, leading to inferior cycling performances. Here, a high-rate and ultrastable alloying-type anode based on the rolled-up amorphous Si nanomembranes is demonstrated. The rolled-up amorphous Si nanomembranes show a very small volume change during the sodiation/desodiation processes and deliver an excellent rate capability and ultralong cycle life up to 2000 cycles with 85% capacity retention. The structural evolution and pseudocapacitance contribution are investigated by using the ex situ characterization techniques combined with kinetics analysis. Furthermore, the mechanism of efficient sodium-ion storage in amorphous Si is kinetically analyzed through an illustrative atomic structure with dangling bonds, offering a new perspective on understanding the sodium storage behavior. These results suggest that nanostructured amorphous Si is a promising anode material for high-performance SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI