Analyzing Tongue Images Using a Conceptual Alignment Deep Autoencoder

计算机科学 人工智能 自编码 代表(政治) 深度学习 编码(内存) 人工神经网络 空格(标点符号) 模式识别(心理学) 机器学习 政治学 政治 操作系统 法学
作者
Yinglong Dai,Guojun Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:6: 5962-5972 被引量:34
标识
DOI:10.1109/access.2017.2788849
摘要

Artificial intelligence can learn some concepts by analyzing sensory data similarly to humans. This paper explores how artificial neural networks (ANNs) can learn abstract concepts by analyzing tongue images based on concepts from traditional Chinese medicine (TCM), which is a discipline that relies heavily on practitioner experience. A computer-aided method will be investigated that analyzes sensory data for TCM practitioners. This paper proposes capitalizing on deep learning techniques. A method called the conceptual alignment deep auto-encoder (CADAE) is proposed to analyze tongue images that represent different body constitution (BC) types, which are the underlying concepts in TCM. In the first step, CADAE encodes the images to a representation space; in the second step, it decodes the patterns. The experiments demonstrate that CADAE can learn effective representations of abstract concepts aligned with BC types by encoding the tongue images. Furthermore, the representation space of the hidden conceptual neurons can be visualized by a decoder network. The experiments also demonstrate that ANNs acquire different data perspectives when different loss functions are used for training. Numerous representation spaces of ANNs remain to be explored. To some extent, our exploration demonstrates that artificial intelligence (AI) has the ability to learn some concepts in a manner similarly to human beings. Based on this ability, AI shows promise in helping humans form new effective concepts that can facilitate medical development and alleviate the burdens of medical practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
00完成签到,获得积分10
1秒前
善学以致用应助艺玲采纳,获得10
1秒前
7秒前
8秒前
11秒前
Orange应助Dd18753801528采纳,获得10
11秒前
风轻青柠完成签到,获得积分10
12秒前
材料生发布了新的文献求助10
12秒前
my发布了新的文献求助10
13秒前
哆啦B梦完成签到,获得积分10
13秒前
13秒前
gusgusgus发布了新的文献求助10
13秒前
14秒前
追风少年发布了新的文献求助10
14秒前
14秒前
蔚蓝发布了新的文献求助10
15秒前
艺玲发布了新的文献求助10
17秒前
正常发布了新的文献求助10
17秒前
多多肉完成签到,获得积分10
17秒前
有点儿微胖完成签到,获得积分10
18秒前
豆4799完成签到,获得积分10
20秒前
ruby关注了科研通微信公众号
21秒前
JUGG发布了新的文献求助10
21秒前
牛马鹅完成签到,获得积分20
21秒前
gusgusgus完成签到,获得积分10
23秒前
Zy发布了新的文献求助10
24秒前
25秒前
25秒前
一平方米的大草原完成签到 ,获得积分10
26秒前
QINXIAOTONG完成签到,获得积分10
27秒前
Owen应助12123浪采纳,获得10
27秒前
lele完成签到,获得积分10
28秒前
我是老大应助大海捞针2025采纳,获得10
29秒前
华仔应助沉静弘文采纳,获得10
29秒前
29秒前
30秒前
李健应助tanfor采纳,获得10
30秒前
英俊的铭应助直率的雪巧采纳,获得10
31秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164