EEG-based automatic emotion recognition: Feature extraction, selection and classification methods

悲伤 脑电图 情绪分类 计算机科学 愤怒 特征提取 情感计算 语音识别 认知心理学 人工智能 手势 感知 客观性(哲学) 情绪识别 面部表情 情感知觉 心理学 社会心理学 认识论 精神科 哲学 神经科学
作者
Pascal Ackermann,Christian Kohlschein,Jó Ágila Bitsch,Klaus Wehrle,Sabina Jeschke
标识
DOI:10.1109/healthcom.2016.7749447
摘要

Automatic emotion recognition is an interdisciplinary research field which deals with the algorithmic detection of human affect, e.g. anger or sadness, from a variety of sources, such as speech or facial gestures. Apart from the obvious usage for industry applications in human-robot interaction, acquiring the emotional state of a person automatically also is of great potential for the health domain, especially in psychology and psychiatry. Here, evaluation of human emotion is often done using oral feedback or questionnaires during doctor-patient sessions. However, this can be perceived as intrusive by the patient. Furthermore, the evaluation can only be done in a noncontinuous manner, e.g. once a week during therapy sessions. In contrast, using automatic emotion detection, the affect state of a person can be evaluated in a continuous non-intrusive manner, for example to detect early on-sets of depression. An additional benefit of automatic emotion recognition is the objectivity of such an approach, which is not influenced by the perception of the patient and the doctor. To reach the goal of objectivity, it is important, that the source of the emotion is not easily manipulable, e.g. as in the speech modality. To circumvent this caveat, novel approaches in emotion detection research the potential of using physiological measures, such as galvanic skin sensors or pulse meters. In this paper we outline a way of detecting emotion from brain waves, i.e., EEG data. While EEG allows for a continuous, real-time automatic emotion recognition, it furthermore has the charm of measuring the affect close to the point of emergence: the brain. Using EEG data for emotion detection is nevertheless a challenging task: Which features, EEG channel locations and frequency bands are best suited for is an issue of ongoing research. In this paper we evaluate the use of state of the art feature extraction, feature selection and classification algorithms for EEG emotion classification using data from the de facto standard dataset, DEAP. Moreover, we present results that help choose methods to enhance classification performance while simultaneously reducing computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinzx发布了新的文献求助10
1秒前
烟花应助鳗鱼尔安采纳,获得10
4秒前
斯文败类应助研友_ZA7XML采纳,获得10
6秒前
wefor完成签到 ,获得积分10
6秒前
Jasper应助666采纳,获得10
11秒前
tion66发布了新的文献求助10
11秒前
12秒前
南宫萍发布了新的文献求助10
13秒前
青青草原图图完成签到,获得积分10
13秒前
14秒前
suki发布了新的文献求助10
15秒前
科研通AI5应助asakovo采纳,获得30
15秒前
鳗鱼尔安完成签到,获得积分10
17秒前
19秒前
鳗鱼尔安发布了新的文献求助10
21秒前
21秒前
22秒前
李爱国应助xuan采纳,获得10
22秒前
ding应助blueming采纳,获得10
22秒前
23秒前
默11发布了新的文献求助10
24秒前
24秒前
JTHe发布了新的文献求助10
27秒前
认真路灯完成签到 ,获得积分10
29秒前
栗子完成签到,获得积分10
30秒前
33秒前
34秒前
wubuking完成签到 ,获得积分10
34秒前
34秒前
简让完成签到 ,获得积分10
34秒前
严剑封完成签到,获得积分0
35秒前
韩学冲完成签到 ,获得积分10
36秒前
37秒前
星辰大海应助无敌大忽悠采纳,获得10
37秒前
38秒前
minoricl发布了新的文献求助10
38秒前
39秒前
xuan发布了新的文献求助10
40秒前
香蕉觅云应助cqsgklqj采纳,获得10
40秒前
blueming发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760753
求助须知:如何正确求助?哪些是违规求助? 3304534
关于积分的说明 10130178
捐赠科研通 3018464
什么是DOI,文献DOI怎么找? 1657649
邀请新用户注册赠送积分活动 791613
科研通“疑难数据库(出版商)”最低求助积分说明 754485