清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries

荷电状态 电池(电) 计算机科学 计算 领域(数学分析) 人工智能 机器学习 算法 功率(物理) 数学 量子力学 物理 数学分析
作者
Hanqing Yu,Lisheng Zhang,Wentao Wang,Li Shen,Siyan Chen,Shichun Yang,Junfu Li,Xinhua Liu
出处
期刊:Energy [Elsevier]
卷期号:278: 127846-127846 被引量:59
标识
DOI:10.1016/j.energy.2023.127846
摘要

To ensure the secure and healthy usage of lithium-ion batteries, it is necessary to accurately estimate the state of charge (SOC) in battery management systems. The development of deep learning (DL) provides a new solution for battery SOC estimation. However, the directly measured physical quantities contain less useful information and have low estimation accuracy. This paper proposes a method of integrating the mechanism knowledge of the battery domain into the DL framework. Firstly, the simplified electrochemical model is utilized to obtain the mechanism-related physical variables to expand the input of the DL model. Secondly, the long short-term memory (LSTM) network is used with the Bayesian optimization, and the variables with high correlation are identified. The best SOC estimation performance can be obtained by adding all the selected highly-correlated variables to the input for training together. The results show that the proposed method can improve the SOC estimation performance with only a slight increase in computation cost. Finally, other DL models are utilized to further validate the effectiveness, to reveal the universality. These results show that the performance of the DL model can be effectively improved by using the knowledge of the battery domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
phd发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
27秒前
禾页完成签到 ,获得积分10
49秒前
kdjm688完成签到,获得积分10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分10
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
zhangshenrong完成签到 ,获得积分10
2分钟前
自然亦凝完成签到,获得积分10
2分钟前
2分钟前
喻初原完成签到 ,获得积分10
2分钟前
现实的俊驰完成签到 ,获得积分10
3分钟前
3分钟前
汉堡包应助七安得安采纳,获得10
3分钟前
3分钟前
七安得安发布了新的文献求助10
3分钟前
yipmyonphu完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
蔓越莓麻薯完成签到 ,获得积分10
4分钟前
Vintoe完成签到 ,获得积分10
4分钟前
linkman发布了新的文献求助10
4分钟前
4分钟前
linkman发布了新的文献求助10
4分钟前
4分钟前
jjj完成签到,获得积分10
5分钟前
yiyixt完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分0
5分钟前
原子超人完成签到,获得积分10
6分钟前
hehe完成签到,获得积分10
6分钟前
Jasper应助joysa采纳,获得10
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
6分钟前
HZ发布了新的文献求助10
6分钟前
6分钟前
叶千山完成签到 ,获得积分10
7分钟前
joysa发布了新的文献求助10
7分钟前
HZ完成签到,获得积分20
7分钟前
量子星尘发布了新的文献求助10
8分钟前
Criminology34应助阿泽采纳,获得10
8分钟前
QQWRV发布了新的文献求助30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644940
求助须知:如何正确求助?哪些是违规求助? 4766456
关于积分的说明 15025933
捐赠科研通 4803292
什么是DOI,文献DOI怎么找? 2568166
邀请新用户注册赠送积分活动 1525618
关于科研通互助平台的介绍 1485156