State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries

荷电状态 电池(电) 计算机科学 计算 领域(数学分析) 人工智能 机器学习 算法 功率(物理) 数学 量子力学 物理 数学分析
作者
Hanqing Yu,Lisheng Zhang,Wentao Wang,Li Shen,Siyan Chen,Shichun Yang,Junfu Li,Xinhua Liu
出处
期刊:Energy [Elsevier]
卷期号:278: 127846-127846 被引量:35
标识
DOI:10.1016/j.energy.2023.127846
摘要

To ensure the secure and healthy usage of lithium-ion batteries, it is necessary to accurately estimate the state of charge (SOC) in battery management systems. The development of deep learning (DL) provides a new solution for battery SOC estimation. However, the directly measured physical quantities contain less useful information and have low estimation accuracy. This paper proposes a method of integrating the mechanism knowledge of the battery domain into the DL framework. Firstly, the simplified electrochemical model is utilized to obtain the mechanism-related physical variables to expand the input of the DL model. Secondly, the long short-term memory (LSTM) network is used with the Bayesian optimization, and the variables with high correlation are identified. The best SOC estimation performance can be obtained by adding all the selected highly-correlated variables to the input for training together. The results show that the proposed method can improve the SOC estimation performance with only a slight increase in computation cost. Finally, other DL models are utilized to further validate the effectiveness, to reveal the universality. These results show that the performance of the DL model can be effectively improved by using the knowledge of the battery domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
华仔应助pica采纳,获得10
1秒前
30发布了新的文献求助30
2秒前
CodeCraft应助L112233采纳,获得10
4秒前
4秒前
ff完成签到 ,获得积分10
5秒前
7秒前
8秒前
10秒前
科研的苦发布了新的文献求助10
10秒前
12秒前
xjh发布了新的文献求助20
12秒前
Xman发布了新的文献求助30
12秒前
怂mi完成签到,获得积分10
13秒前
double ting发布了新的文献求助10
16秒前
17秒前
18秒前
20秒前
21秒前
23秒前
23秒前
24秒前
Cynthia完成签到 ,获得积分10
25秒前
26秒前
Hesm发布了新的文献求助10
26秒前
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
夏筱应助科研通管家采纳,获得10
28秒前
万能图书馆应助xzw采纳,获得10
28秒前
萧水白应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
jinchen发布了新的文献求助10
29秒前
不吃芹菜完成签到,获得积分10
29秒前
29秒前
小星发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469