Similarity measures-based graph co-contrastive learning for drug–disease association prediction

计算机科学 图形 人工智能 机器学习 杠杆(统计) 网络拓扑 注意力网络 数据挖掘 理论计算机科学 操作系统
作者
Zihao Gao,Huifang Ma,Xiaohui Zhang,Yike Wang,Zheyu Wu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (6) 被引量:4
标识
DOI:10.1093/bioinformatics/btad357
摘要

An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions.A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease.https://github.com/Jcmorz/SMGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QL完成签到 ,获得积分10
刚刚
2秒前
2秒前
优秀醉易发布了新的文献求助10
2秒前
Luminos完成签到,获得积分10
3秒前
Wang完成签到,获得积分10
3秒前
笨笨的白梅完成签到,获得积分10
3秒前
倩倩0857完成签到,获得积分10
4秒前
传奇3应助爱吃辣的彤大宝采纳,获得10
4秒前
eee完成签到 ,获得积分10
5秒前
丘比特应助科研进化中采纳,获得10
5秒前
无心发布了新的文献求助10
6秒前
别赋完成签到,获得积分10
7秒前
7秒前
李健的小迷弟应助无痕采纳,获得10
11秒前
鹏笑完成签到,获得积分10
12秒前
13秒前
14秒前
在意i完成签到,获得积分10
14秒前
Hello应助XIeXIe采纳,获得10
14秒前
秃头医生完成签到,获得积分10
17秒前
北宸女完成签到,获得积分10
17秒前
17秒前
18秒前
清脆代桃完成签到 ,获得积分10
19秒前
lianliyou发布了新的文献求助10
20秒前
21秒前
栗子完成签到,获得积分10
22秒前
23秒前
XIeXIe发布了新的文献求助10
24秒前
xixixi完成签到,获得积分10
24秒前
小管完成签到,获得积分10
25秒前
29秒前
美嘉美完成签到,获得积分10
30秒前
烟花应助Lala采纳,获得30
31秒前
柯柯啦啦发布了新的文献求助10
33秒前
JoaquinH完成签到,获得积分10
33秒前
zhuzhu发布了新的文献求助10
33秒前
xtdexy完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012