Similarity measures-based graph co-contrastive learning for drug–disease association prediction

计算机科学 图形 人工智能 机器学习 杠杆(统计) 网络拓扑 注意力网络 数据挖掘 理论计算机科学 操作系统
作者
Zihao Gao,Huifang Ma,Xiaohui Zhang,Yike Wang,Zheyu Wu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (6) 被引量:4
标识
DOI:10.1093/bioinformatics/btad357
摘要

An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions.A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease.https://github.com/Jcmorz/SMGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhp完成签到 ,获得积分10
1秒前
寡核苷酸小白完成签到 ,获得积分10
1秒前
JESSE发布了新的文献求助10
1秒前
Furina完成签到,获得积分10
1秒前
lyn完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
5秒前
tie完成签到,获得积分10
6秒前
酷波er应助风清扬采纳,获得30
7秒前
细腻驳完成签到,获得积分10
7秒前
朴实初夏完成签到 ,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
Lsmile完成签到 ,获得积分10
9秒前
微笑的水桃完成签到 ,获得积分10
9秒前
砥砺完成签到,获得积分10
9秒前
打打应助YXH采纳,获得10
10秒前
坚守初心完成签到,获得积分10
10秒前
他忽然的人完成签到 ,获得积分10
11秒前
细腻天蓝完成签到 ,获得积分10
11秒前
斯文麦片完成签到 ,获得积分10
12秒前
优美甜瓜完成签到,获得积分10
13秒前
qqdm完成签到 ,获得积分10
13秒前
义气尔芙完成签到,获得积分10
13秒前
大个应助淡淡的雨文采纳,获得10
14秒前
朱依敏发布了新的文献求助10
14秒前
王叮叮完成签到,获得积分10
16秒前
依古比古完成签到 ,获得积分10
17秒前
Fantansy完成签到,获得积分10
17秒前
包包酱完成签到,获得积分10
19秒前
Lauren完成签到 ,获得积分10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
dong应助科研通管家采纳,获得20
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
小青椒应助科研通管家采纳,获得30
20秒前
李健应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
折木浮华完成签到,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695