Similarity measures-based graph co-contrastive learning for drug–disease association prediction

计算机科学 图形 人工智能 机器学习 杠杆(统计) 网络拓扑 注意力网络 数据挖掘 理论计算机科学 操作系统
作者
Zihao Gao,Huifang Ma,Xiaohui Zhang,Yike Wang,Zheyu Wu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (6) 被引量:4
标识
DOI:10.1093/bioinformatics/btad357
摘要

An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions.A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease.https://github.com/Jcmorz/SMGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理的问兰完成签到,获得积分10
刚刚
刚刚
共享精神应助袁气小笼包采纳,获得10
1秒前
2秒前
455发布了新的文献求助10
2秒前
Singularity应助艾思米利采纳,获得10
3秒前
3秒前
4秒前
热心市民小红花应助fuguier采纳,获得10
4秒前
THEEVE发布了新的文献求助10
4秒前
爆米花应助糯糯采纳,获得10
5秒前
5秒前
hsy发布了新的文献求助10
6秒前
CF完成签到 ,获得积分10
7秒前
duanhahaha完成签到,获得积分10
7秒前
7秒前
haha发布了新的文献求助10
8秒前
8秒前
8秒前
小蘑菇应助大方的电灯胆采纳,获得10
8秒前
455完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
烟花易冷发布了新的文献求助10
9秒前
Lucas应助hsy采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
充电宝应助THEEVE采纳,获得10
10秒前
矛盾螺旋完成签到,获得积分20
11秒前
wjm完成签到,获得积分10
12秒前
夏天发布了新的文献求助10
13秒前
思源应助qsxy采纳,获得10
13秒前
13秒前
娜娜发布了新的文献求助10
14秒前
14秒前
smkmfy发布了新的文献求助10
14秒前
打工科研发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186