重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Similarity measures-based graph co-contrastive learning for drug–disease association prediction

计算机科学 图形 人工智能 机器学习 杠杆(统计) 网络拓扑 注意力网络 数据挖掘 理论计算机科学 操作系统
作者
Zihao Gao,Huifang Ma,Xiaohui Zhang,Yike Wang,Zheyu Wu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (6) 被引量:4
标识
DOI:10.1093/bioinformatics/btad357
摘要

An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions.A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease.https://github.com/Jcmorz/SMGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
启原完成签到,获得积分10
刚刚
充电宝应助新火新茶采纳,获得10
刚刚
打打应助笑点低的以亦采纳,获得10
刚刚
望北发布了新的文献求助10
刚刚
uuu发布了新的文献求助10
刚刚
语芙发布了新的文献求助10
刚刚
酷波er应助求知采纳,获得10
1秒前
流飞发布了新的文献求助10
1秒前
1秒前
科目三应助小掰采纳,获得10
1秒前
bkagyin应助牛与马采纳,获得10
2秒前
Refuel发布了新的文献求助10
2秒前
painting发布了新的文献求助10
2秒前
2秒前
avalanche应助ZXD1989采纳,获得50
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
CipherSage应助uuu采纳,获得10
4秒前
刘老板发布了新的文献求助10
4秒前
好旺完成签到,获得积分10
5秒前
5秒前
6秒前
li完成签到,获得积分10
6秒前
6秒前
风中的绣连完成签到,获得积分10
6秒前
6秒前
舍曲林完成签到,获得积分10
7秒前
7秒前
潘晨辉完成签到,获得积分20
7秒前
7秒前
圈圈发布了新的文献求助10
7秒前
芒果椰奶冻完成签到,获得积分10
7秒前
盲盒完成签到,获得积分10
7秒前
8秒前
布吉岛发布了新的文献求助10
8秒前
8秒前
皮皮发布了新的文献求助10
8秒前
Goolk发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567