Machine Learning-Based Prediction of Short-Term Adverse Postoperative Outcomes in Cervical Disc Arthroplasty Patients

医学 接收机工作特性 不利影响 关节置换术 神经外科 机器学习 预测建模 外科 人工智能 内科学 计算机科学
作者
Mert Karabacak,Konstantinos Margetis
出处
期刊:World Neurosurgery [Elsevier]
卷期号:177: e226-e238 被引量:1
标识
DOI:10.1016/j.wneu.2023.06.025
摘要

This study aimed to assess the effectiveness of machine learning (ML) algorithms in predicting short-term adverse postoperative outcomes after cervical disc arthroplasty (CDA) and to create a user-friendly and accessible tool for this purpose.The American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) database was used to identify patients who underwent CDA. The outcome of interest was the combined occurrence of adverse events in the short-term postoperative period, including prolonged stay, major complications, nonhome discharges, and 30-day readmissions. To predict the combined outcome of interest, short-term adverse postoperative outcomes, 4 different ML algorithms were utilized to develop predictive models, and these models were incorporated into an open access web application.A total of 6,604 patients that underwent CDA were included in the analysis. The mean area under the receiver operating characteristic curve (AUROC) and accuracy were 0.814 and 87.8% for all algorithms. SHapley Additive exPlanations (SHAP) analyses revealed that white race was the most important predictor variable for all 4 algorithms. The following URL will take users to the open access web application created to provide predictions for individual patients based on their characteristics: huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-CDA.ML approaches have the potential to predict postoperative outcomes after CDA surgery. As the amount of data in spinal surgery grows, the development of predictive models as clinically useful decision-making tools may significantly improve risk assessment and prognosis. We present and make publicly available predictive models for CDA intended to achieve the goals mentioned above.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuyuyuyuyuyuyu完成签到,获得积分10
1秒前
桐桐应助热心的诗蕊采纳,获得10
1秒前
我是老大应助luoluo采纳,获得10
2秒前
hyf567完成签到,获得积分10
2秒前
想打出冰球的太阳系完成签到,获得积分10
2秒前
可爱的函函应助王金娥采纳,获得10
2秒前
传奇3应助姜姜不姜就采纳,获得10
2秒前
3秒前
littleJ完成签到,获得积分10
3秒前
cc应助miaorunquan采纳,获得100
3秒前
任洪达完成签到,获得积分20
4秒前
4秒前
高手中的糕手完成签到,获得积分10
6秒前
李佳倩完成签到 ,获得积分10
6秒前
追求最优解完成签到,获得积分10
6秒前
爆米花应助KingK采纳,获得10
7秒前
小n发布了新的文献求助10
8秒前
SherlockJia发布了新的文献求助10
9秒前
稳重中心发布了新的文献求助10
11秒前
xsx完成签到,获得积分10
11秒前
Lexa发布了新的文献求助20
11秒前
汪礼艳完成签到,获得积分10
11秒前
Andy_Cheung完成签到,获得积分10
12秒前
舒适的鱼鱼完成签到,获得积分10
12秒前
庄彧完成签到 ,获得积分10
13秒前
二六完成签到 ,获得积分10
13秒前
大会开始看完成签到,获得积分10
14秒前
KingYugene完成签到,获得积分10
14秒前
jia完成签到,获得积分10
15秒前
科目三应助青栀采纳,获得10
15秒前
深情安青应助狼主采纳,获得10
15秒前
张文康完成签到 ,获得积分10
16秒前
轩辕乌完成签到,获得积分0
16秒前
打打应助大晨采纳,获得10
16秒前
传奇3应助俭朴的忆曼采纳,获得10
17秒前
Richard发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257586
求助须知:如何正确求助?哪些是违规求助? 2899484
关于积分的说明 8306019
捐赠科研通 2568694
什么是DOI,文献DOI怎么找? 1395263
科研通“疑难数据库(出版商)”最低求助积分说明 652986
邀请新用户注册赠送积分活动 630793