纳米笼
电化学
电催化剂
电化学动力学
表面工程
化学工程
吸附
氧气
氧化还原
催化作用
材料科学
动力学
锂(药物)
溶解
析氧
纳米颗粒
纳米技术
化学
无机化学
电极
物理化学
有机化学
内分泌学
工程类
物理
医学
量子力学
作者
Rui Sun,Meixiu Qu,Lin Peng,Weiwei Yang,Zhenhua Wang,Yu Bai,Kening Sun
出处
期刊:Small
[Wiley]
日期:2023-06-08
卷期号:19 (41)
被引量:7
标识
DOI:10.1002/smll.202302092
摘要
Lithium-sulfur (Li-S) batteries are widely studied because of their high theoretical specific capacity and environmental friendliness. However, the further development of Li-S batteries is hindered by the shuttle effect of lithium polysulfides (LiPSs) and the sluggish redox kinetics. Since the adsorption and catalytic conversion of LiPSs mainly occur on the surface of the electrocatalyst, regulating the surface structure of electrocatalysts is an advisable strategy to solve the obstacles in Li-S batteries. Herein, CoP nanoparticles with high oxygen content on surface embedded in hollow carbon nanocages (C/O-CoP) is employed to functionalize the separators and the effect of the surface oxygen content of CoP on the electrochemical performance is systematically explored. Increasing the oxygen content on CoP surface can enhance the chemical adsorption to lithium polysulfides and accelerate the redox conversions kinetics of polysulfides. The cell with C/O-CoP modified separator can achieve the capacity of 1033 mAh g-1 and maintain 749 mAh g-1 after 200 cycles at 2 C. Moreover, DFT calculations are used to reveal the enhancement mechanism of oxygen content on surface of CoP in Li-S chemistry. This work offers a new insight into developing high-performance Li-S batteries from the perspective of surface engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI