Spatio-Temporal Variation Characteristics of NPP in Weihe Watershed and Its Response to Environmental Factors Based on the CASA and CA–Markov Model

分水岭 环境科学 比例(比率) 马尔可夫链 自然地理学 气候学 大气科学 水文学(农业) 地理 统计 地图学 数学 地质学 岩土工程 机器学习 计算机科学
作者
Lixia Wang,Feiyan Pan,Mingshuang Zhang,Liang Zhao,Shuangcheng Zhang,Jinling Kong
出处
期刊:Environmental science and engineering 卷期号:: 225-241
标识
DOI:10.1007/978-3-031-31289-2_18
摘要

In this study, in order to simulate and predict NPP in the Weihe Watershed and examine its spatiotemporal coverage and dynamic variations, CASA and CA-Markov models are linked. To statistically assess the NPP response to environmental conditions, correlation analysis was used. Results revealed: (1) Seasonal fluctuations were noticeable on the time scale within a year, with the NPP in July being the highest and the NPP in January being the lowest. The forecast indicates that the vegetation of the watershed will continue to increase over the coming ten years based on the rising trend in the interannual change. (2) The NPP coverage is noticeably varied on a regional scale, with a generally high coverage in the south and east and a low coverage in the north and west. (3) The response of NPP to environmental conditions is notable but diverse. There was a weakly positive correlation between the response and climate parameters. With increasing slope and altitude, the NPP exhibits a bimodal tendency that continues to rise. The northern and western aspects’ NPP levels, meanwhile, were higher. (4) The high coupling degrees of the CASA and CA-Markov models are appropriate for the prediction of NPP in the Watershed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fnoopy完成签到,获得积分10
刚刚
dduuaann关注了科研通微信公众号
1秒前
1秒前
matrixu完成签到,获得积分10
1秒前
情怀应助zou采纳,获得10
2秒前
高xl完成签到,获得积分10
2秒前
精明书雁发布了新的文献求助10
2秒前
2秒前
涵涵发布了新的文献求助10
2秒前
小丸子博士完成签到 ,获得积分10
3秒前
陈某某发布了新的文献求助10
3秒前
可爱的函函应助Vermouth采纳,获得10
4秒前
无花果应助迅速芷容采纳,获得10
4秒前
科研通AI6应助李杨采纳,获得10
4秒前
陈xxxxxxxxxx发布了新的文献求助10
4秒前
4秒前
完美世界应助英勇白莲采纳,获得30
4秒前
wyx1111发布了新的文献求助50
4秒前
aa完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
根酱发布了新的文献求助10
5秒前
不乖把头打歪完成签到,获得积分20
6秒前
zyy完成签到,获得积分10
6秒前
wsy完成签到,获得积分10
6秒前
6秒前
超级洋葱发布了新的文献求助10
7秒前
云舒发布了新的文献求助10
7秒前
书院十四完成签到,获得积分10
7秒前
hy发布了新的文献求助10
7秒前
7秒前
勤奋夏兰完成签到,获得积分10
9秒前
9秒前
9秒前
李爱国应助桑尼号采纳,获得10
9秒前
顾矜应助苹果颖采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125