Biomass prediction based on hyperspectral images of the Arabidopsis canopy

高光谱成像 偏最小二乘回归 遥感 天蓬 生物量(生态学) 环境科学 多光谱图像 归一化差异植被指数 数学 人工智能 计算机科学 叶面积指数 统计 植物 农学 地理 生物
作者
Di Song,Kithmee De Silva,Matthew D. Brooks,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:210: 107939-107939 被引量:4
标识
DOI:10.1016/j.compag.2023.107939
摘要

Hyperspectral images provide detailed crop canopy images and spectral information to evaluate crop biomass. However, a large amount of irrelevant information also exists in hyperspectral images, making it difficult to accurately predict crop biomass. Therefore, this study aimed to eliminate irrelevant information from hyperspectral data to accurately predict shoot and root biomass of Arabidopsis. First, hyperspectral images of Arabidopsis were acquired in the spectral range of 400–1000 nm, and the background was removed using different segmentation techniques. Comparing the results of image processing based on image and spectral information methods, the average reflectance spectrum obtained by the spectral information based normalized difference vegetation Index (NDVI) segmentation resulted better shoot and root biomass prediction than the excess green index (ExG), CIELAB (Lab), and soil-adjusted vegetation index (SAVI) methods. Three wavelength optimization methods such as competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), and non-dominated sorting genetic algorithm-II (NSGA) were used to extract useful information from hyperspectral images. BOSS selected the least number of wavelengths and the partial least squares regression (PLSR) models developed using BOSS produced better results for both shoot and root biomass. Only 19 informative wavelengths were selected and PLSR models accurately predicted shoot biomass with RC2 of 0.91, RV2 of 0.85, RMSEC, RMSEV of 0.013 g and 0.017 g, respectively, and root biomass with RC2 of 0.94, RV2 of 0.88, RMSEC and RMSEV of 0.03 g and 0.04 g, respectively. The results indicated that hyperspectral imaging is very effective for accurately predicting shoot and root biomass of Arabidopsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
田田发布了新的文献求助30
3秒前
科研狂人发布了新的文献求助10
4秒前
丘比特应助细腻的书雁采纳,获得10
4秒前
昏睡的鑫磊完成签到,获得积分10
5秒前
子寒完成签到,获得积分10
6秒前
7秒前
libra0009发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
华仔应助真实的安波采纳,获得10
8秒前
深情的路灯完成签到,获得积分10
8秒前
小葵花完成签到,获得积分20
8秒前
9秒前
wanci应助快乐的海亦采纳,获得30
11秒前
HarrisonChen发布了新的文献求助30
11秒前
12秒前
13秒前
爱睡觉的森森完成签到,获得积分10
13秒前
13秒前
小香草发布了新的文献求助20
14秒前
Nyxia发布了新的文献求助10
16秒前
蜗牛撵大象完成签到,获得积分10
18秒前
LLL发布了新的文献求助10
19秒前
20秒前
穿云小蓝鲸完成签到,获得积分10
21秒前
研友_VZG7GZ应助华猴猴采纳,获得10
21秒前
xikawu完成签到,获得积分10
21秒前
21秒前
赘婿应助霸气冰露采纳,获得10
21秒前
22秒前
Forest完成签到,获得积分10
25秒前
felix发布了新的文献求助10
25秒前
小火车发布了新的文献求助10
25秒前
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731