Biomass prediction based on hyperspectral images of the Arabidopsis canopy

高光谱成像 偏最小二乘回归 遥感 天蓬 生物量(生态学) 环境科学 多光谱图像 归一化差异植被指数 数学 人工智能 计算机科学 叶面积指数 统计 植物 农学 地理 生物
作者
Derui Song,K. Silva,Matthew D. Brooks,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107939-107939
标识
DOI:10.1016/j.compag.2023.107939
摘要

Hyperspectral images provide detailed crop canopy images and spectral information to evaluate crop biomass. However, a large amount of irrelevant information also exists in hyperspectral images, making it difficult to accurately predict crop biomass. Therefore, this study aimed to eliminate irrelevant information from hyperspectral data to accurately predict shoot and root biomass of Arabidopsis. First, hyperspectral images of Arabidopsis were acquired in the spectral range of 400–1000 nm, and the background was removed using different segmentation techniques. Comparing the results of image processing based on image and spectral information methods, the average reflectance spectrum obtained by the spectral information based normalized difference vegetation Index (NDVI) segmentation resulted better shoot and root biomass prediction than the excess green index (ExG), CIELAB (Lab), and soil-adjusted vegetation index (SAVI) methods. Three wavelength optimization methods such as competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), and non-dominated sorting genetic algorithm-II (NSGA) were used to extract useful information from hyperspectral images. BOSS selected the least number of wavelengths and the partial least squares regression (PLSR) models developed using BOSS produced better results for both shoot and root biomass. Only 19 informative wavelengths were selected and PLSR models accurately predicted shoot biomass with RC2 of 0.91, RV2 of 0.85, RMSEC, RMSEV of 0.013 g and 0.017 g, respectively, and root biomass with RC2 of 0.94, RV2 of 0.88, RMSEC and RMSEV of 0.03 g and 0.04 g, respectively. The results indicated that hyperspectral imaging is very effective for accurately predicting shoot and root biomass of Arabidopsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Young完成签到 ,获得积分10
1秒前
bjcyqz完成签到,获得积分10
3秒前
EASY完成签到,获得积分10
4秒前
我蔡家豪实名上网完成签到 ,获得积分10
8秒前
geejee完成签到,获得积分10
9秒前
甘sir完成签到 ,获得积分10
10秒前
Brady6完成签到,获得积分10
10秒前
发酒疯很方便吃完成签到,获得积分10
10秒前
俞孤风完成签到,获得积分10
13秒前
杭紫雪完成签到,获得积分10
14秒前
Monster完成签到,获得积分10
14秒前
Jenna完成签到 ,获得积分10
21秒前
Bethune完成签到 ,获得积分10
21秒前
曾经不言完成签到 ,获得积分10
22秒前
pan发布了新的文献求助10
23秒前
st89225完成签到,获得积分10
23秒前
Yurrrrt完成签到,获得积分10
23秒前
青行灯完成签到,获得积分10
24秒前
小草完成签到 ,获得积分10
25秒前
Magali应助Heaven采纳,获得30
27秒前
yx阿聪完成签到,获得积分10
30秒前
Karvs完成签到,获得积分10
33秒前
睡觉王完成签到 ,获得积分10
35秒前
lemon完成签到,获得积分10
37秒前
俊逸吐司完成签到 ,获得积分10
38秒前
39秒前
西洲完成签到 ,获得积分10
39秒前
克林完成签到,获得积分10
40秒前
liuhongcan完成签到,获得积分10
41秒前
张硕发布了新的文献求助10
43秒前
怕孤独的忆南完成签到,获得积分10
47秒前
wnll发布了新的文献求助10
48秒前
悦耳的妙竹完成签到,获得积分10
49秒前
Joseph_LIN完成签到,获得积分10
50秒前
xsf完成签到,获得积分10
50秒前
tuanheqi应助TANGLX采纳,获得50
51秒前
王京华完成签到,获得积分10
51秒前
香蕉子骞完成签到 ,获得积分10
52秒前
ywindm完成签到,获得积分10
53秒前
激情的含巧完成签到,获得积分10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356924
求助须知:如何正确求助?哪些是违规求助? 2980550
关于积分的说明 8694611
捐赠科研通 2662221
什么是DOI,文献DOI怎么找? 1457683
科研通“疑难数据库(出版商)”最低求助积分说明 674849
邀请新用户注册赠送积分活动 665815