Biomass prediction based on hyperspectral images of the Arabidopsis canopy

高光谱成像 偏最小二乘回归 遥感 天蓬 生物量(生态学) 环境科学 多光谱图像 归一化差异植被指数 数学 人工智能 计算机科学 叶面积指数 统计 植物 农学 地理 生物
作者
Di Song,Kithmee De Silva,Matthew D. Brooks,Mohammed Kamruzzaman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107939-107939 被引量:4
标识
DOI:10.1016/j.compag.2023.107939
摘要

Hyperspectral images provide detailed crop canopy images and spectral information to evaluate crop biomass. However, a large amount of irrelevant information also exists in hyperspectral images, making it difficult to accurately predict crop biomass. Therefore, this study aimed to eliminate irrelevant information from hyperspectral data to accurately predict shoot and root biomass of Arabidopsis. First, hyperspectral images of Arabidopsis were acquired in the spectral range of 400–1000 nm, and the background was removed using different segmentation techniques. Comparing the results of image processing based on image and spectral information methods, the average reflectance spectrum obtained by the spectral information based normalized difference vegetation Index (NDVI) segmentation resulted better shoot and root biomass prediction than the excess green index (ExG), CIELAB (Lab), and soil-adjusted vegetation index (SAVI) methods. Three wavelength optimization methods such as competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), and non-dominated sorting genetic algorithm-II (NSGA) were used to extract useful information from hyperspectral images. BOSS selected the least number of wavelengths and the partial least squares regression (PLSR) models developed using BOSS produced better results for both shoot and root biomass. Only 19 informative wavelengths were selected and PLSR models accurately predicted shoot biomass with RC2 of 0.91, RV2 of 0.85, RMSEC, RMSEV of 0.013 g and 0.017 g, respectively, and root biomass with RC2 of 0.94, RV2 of 0.88, RMSEC and RMSEV of 0.03 g and 0.04 g, respectively. The results indicated that hyperspectral imaging is very effective for accurately predicting shoot and root biomass of Arabidopsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兔子发布了新的文献求助10
1秒前
Sy完成签到,获得积分10
2秒前
chimsu发布了新的文献求助20
2秒前
rr发布了新的文献求助10
2秒前
箴言完成签到,获得积分10
3秒前
科研通AI6应助阿尔宙斯采纳,获得10
6秒前
Bluebulu完成签到,获得积分10
6秒前
希望天下0贩的0应助Joker采纳,获得10
6秒前
baiseqiutian完成签到,获得积分10
6秒前
XIAOFA完成签到,获得积分10
6秒前
小鹿呀完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Brett_Liu完成签到,获得积分10
9秒前
酷酷一笑完成签到,获得积分10
10秒前
Link完成签到,获得积分10
10秒前
10秒前
11秒前
LPJ完成签到,获得积分10
11秒前
迷路荷花完成签到,获得积分20
11秒前
小马发布了新的文献求助10
11秒前
12秒前
shaomei发布了新的文献求助30
12秒前
12秒前
充电宝应助nextconnie采纳,获得10
13秒前
Ting应助qq采纳,获得20
13秒前
美好向日葵完成签到,获得积分10
13秒前
小阿发发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
zhull发布了新的文献求助20
15秒前
悦悦发布了新的文献求助10
15秒前
mashibeo发布了新的文献求助10
15秒前
yang发布了新的文献求助10
16秒前
可爱的函函应助wxxz采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004