海链藻
硅藻
浮游植物
生物
水生生态系统
生物物理学
环境化学
活性氧
植物
生态学
化学
细胞生物学
营养物
作者
Natalia Shoman,Ekaterina Solomonova,Arkady Akimov,O. A. Rylkova,Yakov Meger
摘要
The high rate of production and use of copper oxide nanoparticles (CuO NPs) results in its accumulation in the environment. However, the effect of large quantities of CuO NPs on aquatic ecosystems is not fully known. In aquatic ecosystems, phytoplankton is the primary producer of organic matter and the basis of all the trophic interactions; accordingly, the potential effect of CuO NPs on the microalgae community is of great concern. This study established the main patterns of changes in morphological, structural, functional, fluorescent and cytometric parameters in the marine diatom Thalassiosira weissflogii after adding CuO NPs to the medium at concentrations of 250–2500 μg L−1. As shown, the investigated pollutant has cytotoxic, genotoxic and mechanical effect on the microalga covering almost all the aspects of cell functioning. A two-fold decrease in the culture abundance relative to the control is observed at the toxicant content of 550 μg L−1 in the medium. At CuO NPs content above 750 μg L−1, a pronounced inhibition of the alga growth is recorded, as well as a decrease in the efficiency of its photosynthetic apparatus, a disturbance of membrane integrity, an increase in cell volume, a rise in abundance of dead/inactive cells in the culture, enlargement and deformation of nuclei, an increase in reactive oxygen species production, and depolarisation of the mitochondrial membrane. Our results show that high CuO NPs concentrations in water can cause serious disruptions in phytoplankton functioning and in equilibrium of aquatic ecosystems in general.
科研通智能强力驱动
Strongly Powered by AbleSci AI